C++树——遍历二叉树
在讲遍历之前,我们要先创建一个树:

#include <iostream>
using namespace std;
typedef struct node;
typedef node *tree; struct node{
int data; // 结点数值
tree left,right; // 左子树和右子树
};
tree bt;
遍历二叉树有三种方式:
先序遍历:
先序遍历的操作如下:
- 访问根结点
- 先序遍历左子树(递归)
- 先序遍历右子树(递归)
二叉树bt的先序遍历结果:12347536
代码如下:
void preorder(tree bt){
if (bt){ // 判断不为空二叉树
cout << bt.data;
preorder(bt.left); // 递归遍历左子树
preorder(bt.right); // 递归遍历右子树
}
}
中序遍历:
中序遍历的操作如下:
- 中序遍历左子树(递归)
- 访问根结点
- 中序遍历右子树(递归)
二叉树bt的中序遍历结果:7425136
代码如下:
void inorder(tree bt){
if (bt){ // 判断不为空二叉树
inorder(bt.left); // 递归遍历左子树
cout << bt.data;
inorder(bt.right); // 递归遍历右子树
}
}
后序遍历:
后序遍历的操作如下:
- 后序遍历左子树(递归)
- 后序遍历右子树(递归)
- 访问根结点
二叉树bt的后序遍历的结果:7452631
代码如下:
void postorder(tree bt){
if (bt){ // 判断不为空二叉树
postorder(bt.left); // 递归遍历左子树
postorder(bt.right); // 递归遍历右子树
cout << bt.data;
}
}
小结:我们使用递归的方式遍历了二叉树,大家仔细观察可以发现,先序遍历就是先访问根结点,再递归,中序遍历是把访问根结点放中间,后续遍历是最后访问。
补充知识:
表达式:a+b*c
表达式二叉树:

前缀表达式(波兰式):+a*bc
中缀表达式:a+b*c/d
后缀表达式(逆波兰式):abc*+
怎么将中缀表达式转换为前缀表达式或后缀表达式呢?只需像前序遍历和后序遍历一样遍历表达二叉树即可。
C++树——遍历二叉树的更多相关文章
- 二叉树-二叉查找树-AVL树-遍历
一.二叉树 定义:每个节点都不能有多于两个的儿子的树. 二叉树节点声明: struct treeNode { elementType element; treeNode * left; treeNod ...
- lintcode :前序遍历和中序遍历树构造二叉树
解题 前序遍历和中序遍历树构造二叉树 根据前序遍历和中序遍历树构造二叉树. 样例 给出中序遍历:[1,2,3]和前序遍历:[2,1,3]. 返回如下的树: 2 / \ 1 3 注意 你可以假设树中不存 ...
- lintcode: 中序遍历和后序遍历树构造二叉树
题目 中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: 2 / \ 1 3 注意 你可 ...
- python数据结构之树和二叉树(先序遍历、中序遍历和后序遍历)
python数据结构之树和二叉树(先序遍历.中序遍历和后序遍历) 树 树是\(n\)(\(n\ge 0\))个结点的有限集.在任意一棵非空树中,有且只有一个根结点. 二叉树是有限个元素的集合,该集合或 ...
- LintCode-72.中序遍历和后序遍历树构造二叉树
中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 注意事项 你可以假设树中不存在相同数值的节点 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: ...
- LintCode-73.前序遍历和中序遍历树构造二叉树
前序遍历和中序遍历树构造二叉树 根据前序遍历和中序遍历树构造二叉树. 注意事项 你可以假设树中不存在相同数值的节点 样例 给出中序遍历:[1,2,3]和前序遍历:[2,1,3]. 返回如下的树: ...
- PTA L2-006 树的遍历-二叉树的后序遍历+中序遍历,输出层序遍历 团体程序设计天梯赛-练习集
L2-006 树的遍历(25 分) 给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出一个正整数N(≤),是二叉树中结点的 ...
- javascript实现数据结构: 树和二叉树,二叉树的遍历和基本操作
树型结构是一类非常重要的非线性结构.直观地,树型结构是以分支关系定义的层次结构. 树在计算机领域中也有着广泛的应用,例如在编译程序中,用树来表示源程序的语法结构:在数据库系统中,可用树来组织信息:在分 ...
- [leetcode/lintcode 题解] 前序遍历和中序遍历树构造二叉树
[题目描述] 根据前序遍历和中序遍历树构造二叉树. 在线评测地址: https://www.jiuzhang.com/solution/construct-binary-tree-from-preor ...
随机推荐
- C# 网络流
流(stream)是对串行传输的数据的一种抽象表示,底层的设备可以是文件.外部设备.主存.网络套接字等等. 流有三种基本的操作:写入.读取和查找. 如果数据从内存缓冲区传输到外部源,这样的流叫作&qu ...
- 添加特定软件证书到windows不信任列表
$target="C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe" $filePath=$PSScript ...
- 或许你知道Python的shell,那jshell呢?
Java 10以后,java官方推出了类似python的shell操作的jshell,你的指令可以及时反馈,对于新手学习而言非常有用.如果你和我一样刚学Java,建议你使用高版本,和我一起开始使用js ...
- [Golang]-3 函数、多返回值、变参、闭包、递归
// test01 project main.go package main import ( "fmt" ) // 单返回值的函数 func plus(a int, b int) ...
- python yield && scrapy yield
title: python yield && scrapy yield date: 2020-03-17 16:00:00 categories: python tags: 语法 yi ...
- 解决宝塔面板没有命令行问题 && 查看宝塔面板项目环境
# 宝塔面板没有命令行,无法查看错误输出 利用ssh.比如xshell,MObaxtern .输入ip,username,password就可以进入服务器的命令行. # 查看项目的环境 服务器默认的p ...
- Linux 驱动框架---input子系统框架
前面从具体(Linux 驱动框架---input子系统)的工作过程学习了Linux的input子系统相关的架构知识,但是前面的学习比较实际缺少总结,所以今天就来总结一下输入子系统的架构分层,站到远处来 ...
- css sticky & 吸顶效果
css sticky & 吸顶效果 demo https://codepen.io/xgqfrms/pen/PoqyVYz css position sticky not working ht ...
- TypeScript callback Object params
TypeScript callback Object params 回调函数 对象 参数 const func = (options = {}) => { // do somthing retu ...
- IE & 自定义滚动条 & scroll
IE & 自定义滚动条 & scroll 请问这种在 IE 下的自定义滚动条,是如何实现的? https://fairyever.gitee.io/d2-admin-preview/# ...