前言

之前的文章中通过电商场景中秒杀的例子和大家分享了单体架构中锁的使用方式,但是现在很多应用系统都是相当庞大的,很多应用系统都是微服务的架构体系,那么在这种跨jvm的场景下,我们又该如何去解决并发。

单体应用锁的局限性

在进入实战之前简单和大家粗略聊一下互联网系统中的架构演进。

在互联网系统发展之初,消耗资源比较小,用户量也比较小,我们只部署一个tomcat应用就可以满足需求。一个tomcat我们可以看做是一个jvm的进程,当大量的请求并发到达系统时,所有的请求都落在这唯一的一个tomcat上,如果某些请求方法是需要加锁的,比如上篇文章中提及的秒杀扣减库存的场景,是可以满足需求的。但是随着访问量的增加,一个tomcat难以支撑,这时候我们就需要集群部署tomcat,使用多个tomcat支撑起系统。

在上图中简单演化之后,我们部署两个Tomcat共同支撑系统。当一个请求到达系统的时候,首先会经过nginx,由nginx作为负载均衡,它会根据自己的负载均衡配置策略将请求转发到其中的一个tomcat上。当大量的请求并发访问的时候,两个tomcat共同承担所有的访问量。这之后我们同样进行秒杀扣减库存的时候,使用单体应用锁,还能满足需求么?

之前我们所加的锁是JDK提供的锁,这种锁在单个jvm下起作用,当存在两个或者多个的时候,大量并发请求分散到不同tomcat,在每个tomcat中都可以防止并发的产生,但是多个tomcat之间,每个Tomcat中获得锁这个请求,又产生了并发。从而扣减库存的问题依旧存在。这就是单体应用锁的局限性。那我们如果解决这个问题呢?接下来就要和大家分享分布式锁了。

分布式锁

什么是分布式锁?

那么什么是分布式锁呢,在说分布式锁之前我们看到单体应用锁的特点就是在一个jvm进行有效,但是无法跨越jvm以及进程。所以我们就可以下一个不那么官方的定义,分布式锁就是可以跨越多个jvm,跨越多个进程的锁,像这样的锁就是分布式锁。

设计思路

由于tomcat是java启动的,所以每个tomcat可以看成一个jvm,jvm内部的锁无法跨越多个进程。所以我们实现分布式锁,只能在这些jvm外去寻找,通过其他的组件来实现分布式锁。

上图两个tomcat通过第三方的组件实现跨jvm,跨进程的分布式锁。这就是分布式锁的解决思路。

实现方式

那么目前有哪些第三方组件来实现呢?目前比较流行的有以下几种:

  • 数据库,通过数据库可以实现分布式锁,但是高并发的情况下对数据库的压力比较大,所以很少使用。
  • Redis,借助redis可以实现分布式锁,而且redis的java客户端种类很多,所以使用方法也不尽相同。
  • Zookeeper,也可以实现分布式锁,同样zk也有很多java客户端,使用方法也不同。

针对上述实现方式,老猫还是通过具体的代码例子来一一演示。

基于数据库的分布式锁

思路:基于数据库悲观锁去实现分布式锁,用的主要是select ... for update。select ... for update是为了在查询的时候就对查询到的数据进行了加锁处理。当用户进行这种行为操作的时候,其他线程是禁止对这些数据进行修改或者删除操作,必须等待上个线程操作完毕释放之后才能进行操作,从而达到了锁的效果。

实现:我们还是基于电商中超卖的例子和大家分享代码。

咱们还是利用上次单体架构中的超卖的例子和大家分享,针对上次的代码进行改造,我们新键一张表,叫做distribute_lock,这张表的目的主要是为了提供数据库锁,我们来看一下这张表的情况。



由于我们这边模拟的是订单超卖的场景,所以在上图中我们有一条订单的锁数据。

我们将上一篇中的代码改造一下抽取出一个controller然后通过postman去请求调用,当然后台是启动两个jvm进行操作,人别是8080端口以及8081端口。完成之后的代码如下:

/**
* @author kdaddy@163.com
* @date 2021/1/3 10:48
* @desc 公众号“程序员老猫”
*/
@Service
@Slf4j
public class MySQLOrderService {
@Resource
private KdOrderMapper orderMapper;
@Resource
private KdOrderItemMapper orderItemMapper;
@Resource
private KdProductMapper productMapper;
@Resource
private DistributeLockMapper distributeLockMapper;
//购买商品id
private int purchaseProductId = 100100;
//购买商品数量
private int purchaseProductNum = 1; @Transactional(propagation = Propagation.REQUIRED)
public Integer createOrder() throws Exception{
log.info("进入了方法");
DistributeLock lock = distributeLockMapper.selectDistributeLock("order");
if(lock == null) throw new Exception("该业务分布式锁未配置");
log.info("拿到了锁");
//此处为了手动演示并发,所以我们暂时在这里休眠1分钟
Thread.sleep(60000); KdProduct product = productMapper.selectByPrimaryKey(purchaseProductId);
if (product==null){
throw new Exception("购买商品:"+purchaseProductId+"不存在");
}
//商品当前库存
Integer currentCount = product.getCount();
log.info(Thread.currentThread().getName()+"库存数"+currentCount);
//校验库存
if (purchaseProductNum > currentCount){
throw new Exception("商品"+purchaseProductId+"仅剩"+currentCount+"件,无法购买");
} //在数据库中完成减量操作
productMapper.updateProductCount(purchaseProductNum,"kd",new Date(),product.getId());
//生成订单
...次数省略,源代码可以到老猫的github下载:https://github.com/maoba/kd-distribute
return order.getId();
}
}

SQL的写法如下:

select
*
from distribute_lock
where business_code = #{business_code,jdbcType=VARCHAR}
for update

以上为主要实现逻辑,关于代码中的注意点:

  • createOrder方法必须要有事务,因为只有在事务存在的情况下才能触发select for update的锁。
  • 代码中必须要对当前锁的存在性进行判断,如果为空的情况下,会报异常

我们来看一下最终运行的效果,先看一下console日志,

8080的console日志情况:

11:49:41  INFO 16360 --- [nio-8080-exec-2] c.k.d.service.MySQLOrderService          : 进入了方法
11:49:41 INFO 16360 --- [nio-8080-exec-2] c.k.d.service.MySQLOrderService : 拿到了锁

8081的console日志情况:

11:49:48  INFO 17640 --- [nio-8081-exec-2] c.k.d.service.MySQLOrderService          : 进入了方法

通过日志情况,两个不同的jvm,由于第一个到8080的请求优先拿到了锁,所以8081的请求就处于等待锁释放才会去执行,这说明我们的分布式锁生效了。

再看一下完整执行之后的日志情况:

8080的请求:

11:58:01  INFO 15380 --- [nio-8080-exec-1] c.k.d.service.MySQLOrderService          : 进入了方法
11:58:01 INFO 15380 --- [nio-8080-exec-1] c.k.d.service.MySQLOrderService : 拿到了锁
11:58:07 INFO 15380 --- [nio-8080-exec-1] c.k.d.service.MySQLOrderService : http-nio-8080-exec-1库存数1

8081的请求:

11:58:03  INFO 16276 --- [nio-8081-exec-1] c.k.d.service.MySQLOrderService          : 进入了方法
11:58:08 INFO 16276 --- [nio-8081-exec-1] c.k.d.service.MySQLOrderService : 拿到了锁
11:58:14 INFO 16276 --- [nio-8081-exec-1] c.k.d.service.MySQLOrderService : http-nio-8081-exec-1库存数0
11:58:14 ERROR 16276 --- [nio-8081-exec-1] o.a.c.c.C.[.[.[/].[dispatcherServlet] : Servlet.service() for servlet [dispatcherServlet] in context with path [] threw exception [Request processing failed; nested exception is java.lang.Exception: 商品100100仅剩0件,无法购买] with root cause java.lang.Exception: 商品100100仅剩0件,无法购买
at com.kd.distribute.service.MySQLOrderService.createOrder(MySQLOrderService.java:61) ~[classes/:na]

很明显第二个请求由于没有库存,导致最终购买失败的情况,当然这个场景也是符合我们正常的业务场景的。最终我们数据库的情况是这样的:

很明显,我们到此数据库的库存和订单数量也都正确了。到此我们基于数据库的分布式锁实战演示完成,下面我们来归纳一下如果使用这种锁,有哪些优点以及缺点。

  • 优点:简单方便、易于理解、易于操作。
  • 缺点:并发量大的时候对数据库的压力会比较大。
  • 建议:作为锁的数据库和业务数据库分开。

写在最后

对于上述数据库分布式锁,其实在我们的日常开发中用的也是比较少的。基于redis以及zk的锁倒是用的比较多一些,本来老猫想把redis锁以及zk锁放在这一篇中一起分享掉,但是再写在同一篇上面的话,篇幅就显得过长了,因此本篇就和大家分享这一种分布式锁。源码大家可以在老猫的github中下载到。地址是:https://github.com/maoba/kd-distribute,后面老猫会把redis锁以及zk锁都分享给大家,敬请期待,当然更多的干货分享,也欢迎大家关注公众号“程序员老猫”。

【分布式锁的演化】“超卖场景”,MySQL分布式锁篇的更多相关文章

  1. mysql的锁--行锁,表锁,乐观锁,悲观锁

    一 引言--为什么mysql提供了锁 最近看到了mysql有行锁和表锁两个概念,越想越疑惑.为什么mysql要提供锁机制,而且这种机制不是一个摆设,还有很多人在用.在现代数据库里几乎有事务机制,aci ...

  2. 使用mysql乐观锁解决并发问题

    案例说明: 银行两操作员同时操作同一账户.比如A.B操作员同时读取一余额为1000元的账户,A操作员为该账户增加100元,B操作员同时为该账户扣除50元,A先提交,B后提交.最后实际账户余额为1000 ...

  3. MYSQL的锁介绍,以及死锁发生情况-带例子

    mysql锁能在并发情况下的mysql进行更好的优化 MySQL有三种锁的级别:页级.表级.行级,这3种锁的特性可大致归纳如下: 表级锁:开销小,加锁快:不会出现死锁:锁定粒度大,发生锁冲突的概率最高 ...

  4. 以商品超卖为例讲解Redis分布式锁

    本案例主要讲解Redis实现分布式锁的两种实现方式:Jedis实现.Redisson实现.网上关于这方面讲解太多了,Van自认为文笔没他们好,还是用示例代码说明. 一.jedis 实现 该方案只考虑R ...

  5. redis分布式锁解决超卖问题

    redis事务 redis事务介绍:    1. redis事务可以一次执行多个命令,本质是一组命令的集合. 2.一个事务中的所有命令都会序列化,按顺序串行化的执行而不会被其他命令插入 作用:一个队列 ...

  6. Redis 分布式锁使用不当,酿成一个重大事故,超卖了100瓶飞天茅台!!!(转)

    基于Redis使用分布式锁在当今已经不是什么新鲜事了. 本篇文章主要是基于我们实际项目中因为redis分布式锁造成的事故分析及解决方案.我们项目中的抢购订单采用的是分布式锁来解决的,有一次,运营做了一 ...

  7. 【转】MySQL乐观锁在分布式场景下的实践

    背景 在电商购物的场景下,当我们点击购物时,后端服务就会对相应的商品进行减库存操作.在单实例部署的情况,我们可以简单地使用JVM提供的锁机制对减库存操作进行加锁,防止多个用户同时点击购买后导致的库存不 ...

  8. MySQL乐观锁在分布式场景下的实践

    背景 在电商购物的场景下,当我们点击购物时,后端服务就会对相应的商品进行减库存操作.在单实例部署的情况,我们可以简单地使用JVM提供的锁机制对减库存操作进行加锁,防止多个用户同时点击购买后导致的库存不 ...

  9. 秒杀怎么样才可以防止超卖?基于mysql的事务和锁实现

    Reference:  http://blog.ruaby.com/?p=256 并发事务处理带来的问题? 相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从 ...

随机推荐

  1. zookeeper基础笔记

    一.安装 1.安装jdk 2.安装Zookeeper 3.单机模式(stand-alone):安装目录/conf   复制 zoo_sample.cfg 并粘贴到当前目录下,命名zoo.cfg. 二. ...

  2. 第7.21节 Python抽象类—register注册虚拟子类

    上两节介绍了Python抽象类的真实子类的定义和使用,本节介绍另一种抽象类的实现方法:虚拟子类方法. 一.    相关概念 虚拟子类是将其他的不是从抽象基类派生的类"注册"到抽象基 ...

  3. PyQt(Python+Qt)学习随笔:QDockWidget停靠窗toggleViewAction方法的作用

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 toggleViewAction方法返回一个动作对象,该动作对象通过点 ...

  4. HBase的基本使用(安装配置、启动关闭、hbash shell的基本操作、phoenix、实战)

    HBase的前提条件: JDK SSH Hadoop JDK:Hadoop和JDK运行的环境,他们的守护进程运行在JVM下.HBase支持JDK 1.6以上的版本.比如: jdk-8u161-linu ...

  5. 对巡风vulscan的理解

    # coding:utf-8 # 漏洞检测引擎 import urllib2 import thread import time import pymongo import sys import da ...

  6. Python(二) 安装PIL

    1. 在使用PIL之前我们需先安装PIL. 在cmd中使用 pip 指令,竟报错,没有这个指令 2. 我就给环境变量加上这个指令,找到本机上安装python的位置,找到scrips文件夹, 看到里面的 ...

  7. 可选链plugin-proposal-optional-chaining的使用(优化)

    第一步 安装 npm install --save-dev @babel/plugin-proposal-optional-chaining 然后在.babelrc.js文件夹里进行配置 plugin ...

  8. django 取出数据库的时间与当前时间相加减

    1 转换时区utc比北京时间慢八个小时 from datetime import tzinfo, timedelta, datetime ZERO = timedelta(0) class UTC(t ...

  9. 一、本地项目部署到GitHub上

    部署之前准备工作,本地安装Git和注册一个GitHub账号: 本地安装Git 因为官网下载速度较慢,从其他地方下载 https://npm.taobao.org/mirrors/git-for-win ...

  10. C++将整型值转换为字符串

    最简单的方法是使用一个字符串流(stringstream):#include<iostream>#include<string>#include<sstream>u ...