UVa 1326 - Jurassic Remains(枚举子集+中途相遇法)
训练指南p.59
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <map> using namespace std; const int MAXN = ; int N;
int A[MAXN];
char str[];
map<int , int> table; int bitcount( int x )
{
int res = ;
while ( x )
{
if ( x & ) ++res;
x >>= ;
}
return res;
} int main()
{
while ( scanf( "%d", &N ) == )
{
for ( int i = ; i < N; ++i )
{
scanf( "%s", str );
A[i] = ;
for ( int j = ; str[j]; ++j )
A[i] |= ( << ( str[j] - 'A' ) );
} table.clear(); int n1 = N / , n2 = N - n1;
for ( int i = ; i < ( << n1 ); ++i )
{
int tmp = ;
for ( int j = ; j < n1; ++j )
if ( i & ( << j ) )
tmp ^= A[j];
if ( !table.count(tmp) || bitcount(i) > bitcount( table[tmp] ) ) table[tmp] = i;
} int ans = ;
for ( int i = ; i < ( << n2 ); ++i )
{
int tmp = ;
for ( int j = ; j < n2; ++j )
if ( i & ( << j ) ) tmp ^= A[ n1 + j ];
if ( table.count(tmp) && bitcount(ans) < bitcount(i) + bitcount(table[tmp]) )
ans = ( i << n1 ) | table[tmp];
} printf("%d\n", bitcount(ans) );
bool first = false;
for ( int i = ; i < N; ++i )
if ( ans & ( << i ) )
{
if ( first ) putchar(' ');
printf("%d", i + );
first = true;
}
puts("");
}
return ;
}
UVa 1326 - Jurassic Remains(枚举子集+中途相遇法)的更多相关文章
- uva 6757 Cup of Cowards(中途相遇法,貌似)
uva 6757 Cup of CowardsCup of Cowards (CoC) is a role playing game that has 5 different characters (M ...
- uva1152 - 4 Values whose Sum is 0(枚举,中途相遇法)
用中途相遇法的思想来解题.分别枚举两边,和直接暴力枚举四个数组比可以降低时间复杂度. 这里用到一个很实用的技巧: 求长度为n的有序数组a中的数k的个数num? num=upper_bound(a,a+ ...
- POJ 1903 & ZOJ 2469 & UVA 1326 Jurassic Remains (部分枚举)
题意:给定n个只有大写字母组成的字符串,选取尽可能多的字符串,使得这些字符串中每个字母的个数都是偶数.n<=24 思路:直接枚举每个字符串的选或不选,复杂度是O(2^n).其实还有更简便的方法. ...
- [UVa 1326]Jurassic Remains
题解 在一个字符串中,每个字符出现的次数本身是无关紧要的,重要的只是这些次数的奇偶性,因此想到用一个二进制的位表示一个字母($1$表示出现奇数次,$0$表示出现偶数次).比如样例的$6$个数,写成二进 ...
- UVA - 1608 Non-boring sequences (分治,中途相遇法)
如果一个序列中是否存在一段连续子序列中的每个元素在该子序列中都出现了至少两次,那么这个序列是无聊的,反正则不无聊.给你一个长度为n(n<=200000)的序列,判断这个序列是否无聊. 稀里糊涂A ...
- LA 2965 Jurassic Remains (中途相遇法)
Jurassic Remains Paleontologists in Siberia have recently found a number of fragments of Jurassic pe ...
- 【UVALive】2965 Jurassic Remains(中途相遇法)
题目 传送门:QWQ 分析 太喵了~~~~~ 还有中途相遇法这种东西的. 嗯 以后可以优化一些暴力 详情左转蓝书P58 (但可能我OI生涯中都遇不到正解是这个的题把...... 代码 #include ...
- 紫书 习题 8-16 UVa 1618 (中途相遇法)
暴力n的四次方, 然而可以用中途相遇法的思想, 分左边两个数和右边两个数来判断, 最后合起来判断. 一边是n平方logn, 合起来是n平方logn(枚举n平方, 二分logn) (1)两种比较方式是相 ...
- 【uva 1152】4 Values Whose Sum is Zero(算法效率--中途相遇法+Hash或STL库)
题意:给定4个N元素几个A,B,C,D,要求分别从中选取一个元素a,b,c,d使得a+b+c+d=0.问有多少种选法.(N≤4000,D≤2^28) 解法:首先我们从最直接最暴力的方法开始思考:四重循 ...
随机推荐
- Object类的常用方法
Object类是Java中所有类的始祖.如果没有明确的指定继承,则默认继承Object类.在Java中除了基本类型外都是Object类型的对象,包括数组. 1)equals方法 Object: pub ...
- C# return语句
一.C# return语句 return语句用于终止它出现在其中的方法的执行,并将控制返回给调用方法. 语法格式如下: return ...;return语句还可以返回一个可选值.如果方法为void类 ...
- JavaWeb —— JSP 总结
JSP总结 静态网页 在网站设计中,纯粹HTML(标准通用标记语言下的一个应用)格式的网页通常被称为“静态网页”,静态网页是标准的HTML文件,它的文件扩展名是.htm..html .静态网页是 ...
- 4.Spring Cloud初相识--------Feign负载均衡
前言: 在上一节里,我们学习了ribbon的使用. 我们了解到ribbon是一个客户端负载均衡机制. 而我们今天要讲的Feign呢,也是一款客户端负载均衡机制. 或者这样说,Feign封装了ribbo ...
- Java学习过程中的收获
1. String <--> Date 这种转换要用到java.text.SimpleDateFormat类 字符串转换成日期类型: 方法1: 也是最简单的方法 Date date=new ...
- C++声明之CV限定符
目录 1.const 1.1 const obj 如果调用 non-const member fun会编译出错 经典错误 1.2 例子:STD里的操作符重载 1.3 例子:<cpp primer ...
- git 常用命令及仓库创建
一.常用命令 1.添加到本地仓库缓存 git add . 2.查看本地仓库状态 git status 3.提交到本地仓库 git commit -am 'project init' 4.连接线上分支 ...
- shell脚本结构化语句
本文中记录一下shell中的两种循环语句:for和while for循环 for循环是linux shell中最常用的结构,for循环有三种结构:1.列表for循环.2.不带列表for循环.3.C风格 ...
- FastDFS文件管理系统
一.FastDFS介绍 FastDFS 是一个开源的高性能分布式文件系统(DFS). 它的主要功能包括:文件存储,文件同步和文件访问,以及高容量和负载平衡.主要解决了海量数据存储问题,特别适合以中小文 ...
- scrapy--doutu
年轻人都爱斗图,可是有时候斗图的数量比较少.就想办法收藏其他的人图片,然而只要能在doutula网页里爬取图片,是一件很棒的的事,看别人写爬斗图的爬虫程序有点麻烦,自己也来动动手,简单,实用.给大家分 ...