【BZOJ3744】Gty的妹子序列

Description

我早已习惯你不在身边,
人间四月天 寂寞断了弦。
回望身后蓝天,
跟再见说再见……
某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现
她们排成了一个序列,每个妹子有一个美丽度。
Bakser神犇与他打算研究一下这个妹子序列,于是Bakser神犇问道:"你知道区间[l,r]中妹子们美丽度的逆序对数吗?"
蒟蒻Autumn只会离线乱搞啊……但是Bakser神犇说道:"强制在线。"
请你帮助一下Autumn吧。
给定一个正整数序列a,对于每次询问,输出al...ar中的逆序对数,强制在线。

Input

第一行包括一个整数n(1<=n<=50000),表示数列a中的元素数。
第二行包括n个整数a1...an(ai>0,保证ai在int内)。
接下来一行包括一个整数m(1<=m<=50000),表示询问的个数。
接下来m行,每行包括2个整数l、r(1<=l<=r<=n),表示询问al...ar中的逆序对数(若ai>aj且i<j,则为一个逆序对)。
l,r要分别异或上一次询问的答案(lastans),最开始时lastans=0。
保证涉及的所有数在int内。

Output

对每个询问,单独输出一行,表示al...ar中的逆序对数。

Sample Input

4
1 4 2 3
1
2 4

Sample Output

2

题解:网上都说要用可持久化线段树,我偏不用,哼~

我们枚举每个块的左端点i,再枚举i右面的所有j,并用树状数组处理出[i,j]中的逆序对数。这样,对于每个询问[a,b],我们已经知道了[c*block,b]中的逆序对数。

我们不妨在倒着求一遍,枚举每个块的右端点i,再枚举i左边的所有j,并用树状数组处理出[j,i]中的逆序对数。这样,我们用[c*block,b]+[a,d*block]-[c*block,d*block],现在[a,b]中的大部分逆序对已经被我们统计完了,就只剩一个在[a,c*block),一个在(d*block,b]中的逆序对了。直接将一边全都再扔到树状数组里,然后用另一边去查找就行了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn=50010;
int n,m,B,nm,now,ans;
int s[maxn],tim[maxn],s1[240][maxn],s2[240][maxn],v[maxn];
struct node
{
int val,org;
}num[maxn];
bool cmp(node a,node b)
{
return a.val<b.val;
}
void updata(int x)
{
for(int i=x;i<=nm;i+=i&-i)
{
if(tim[i]<now) tim[i]=now,s[i]=0;
s[i]++;
}
}
int query(int x)
{
int i,ret=0;
for(i=x;i;i-=i&-i)
{
if(tim[i]<now) tim[i]=now,s[i]=0;
ret+=s[i];
}
return ret;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,j,a,b,c,d,pre=-1<<30;
for(i=0;i<n;i++) num[i].val=rd(),num[i].org=i;
sort(num,num+n,cmp);
B=int(sqrt(double(n)));
for(i=0;i<n;i++)
{
if(num[i].val>pre) pre=num[i].val,nm++;
v[num[i].org]=nm;
}
for(i=0;i*B<n;i++)
{
now++,a=i*B;
for(j=a;j<n;j++) s1[i][j]=(j?s1[i][j-1]:0)+j-a-query(v[j]),updata(v[j]);
}
for(i=(n-1)/B;i>=1;i--)
{
now++,b=i*B-1;
for(j=b;j>=0;j--) s2[i][j]=s2[i][j+1]+query(v[j]-1),updata(v[j]);
}
m=rd();
for(i=1;i<=m;i++)
{
a=rd()^ans,b=rd()^ans,a--,b--,ans=0;
if(a>b) swap(a,b);
c=a/B,d=b/B;
if(c==d)
{
now++;
for(j=a;j<=b;j++) ans+=j-a-query(v[j]),updata(v[j]);
printf("%d\n",ans);
continue;
}
ans=s1[c+1][b]-s1[c+1][d*B-1]+s2[d][a],now++;
for(j=d*B;j<=b;j++) updata(v[j]);
for(j=a;j<c*B+B;j++) ans+=query(v[j]-1);
printf("%d\n",ans);
}
return 0;
}

【BZOJ3744】Gty的妹子序列 分块+树状数组的更多相关文章

  1. 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树

    题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...

  2. BZOJ 3744 Gty的妹子序列 (分块+树状数组+主席树)

    题面传送门 题目大意:给你一个序列,多次询问,每次取出一段连续的子序列$[l,r]$,询问这段子序列的逆序对个数,强制在线 很熟悉的分块套路啊,和很多可持久化01Trie的题目类似,用分块预处理出贡献 ...

  3. BZOJ 3744 Gty的妹子序列 分块+树状数组

    具体分析见 搬来大佬博客 时间复杂度 O(nnlogn)O(n\sqrt nlogn)O(nn​logn) CODE #include <cmath> #include <cctyp ...

  4. BZOJ3787:Gty的文艺妹子序列(分块,树状数组)

    Description Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道: “在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢.你还能求出某个区间中妹子们美丽度的逆序对 ...

  5. BZOJ 3787: Gty的文艺妹子序列 [分块 树状数组!]

    传送门 题意:单点修改,询问区间内逆序对数,强制在线 看到加了!就说明花了不少时间.... 如果和上题一样预处理信息,用$f[i][j]$表示块i到j的逆序对数 强行修改的话,每个修改最多会修改$(\ ...

  6. BZOJ 3787 Gty的文艺妹子序列(分块+树状数组+前缀和)

    题意 给出n个数,要求支持单点修改和区间逆序对,强制在线. n,m<=50000 题解 和不带修改差不多,预处理出smaller[i][j]代表前i块小于j的数的数量,但不能用f[i][j]代表 ...

  7. BZOJ3787 gty的文艺妹子序列 【树状数组】【分块】

    题目分析: 首先这种乱七八糟的题目就分块.然后考虑逆序对的统计. 一是块内的,二是块之间的,三是一个块内一个块外,四是都在块外. 令分块大小为$S$. 块内的容易维护,单次维护时间是$O(S)$. 块 ...

  8. 【BZOJ 3295】动态逆序对 - 分块+树状数组

    题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...

  9. 【bzoj2141】排队 分块+树状数组

    题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别, ...

随机推荐

  1. 2017.6.30 用shiro实现并发登录人数控制(实际项目中的实现)

    之前的学习总结:http://www.cnblogs.com/lyh421/p/6698871.html 1.kickout功能描述 如果将配置文件中的kickout设置为true,则在另处再次登录时 ...

  2. 转:阿里 Weex 思路与实战(web相关)

    Weex——关于移动端动态性的思考.实现和未来 2016-04-05 勾股.伊耆 移动开发前线 本文由手机淘宝技术团队赵锦江(勾股).黄金涌(伊耆)等专家创作.手淘作为电商应用,对客户端/前端的动态性 ...

  3. 转:MVVM的基本入门简介

    https://mp.weixin.qq.com/s?__biz=MzA3MjA4NjE3NQ==&mid=404502568&idx=1&sn=fe512f9820b99d3 ...

  4. [PWA] Cache JSON Data in a React PWA with Workbox, and Display it while Offline

    We can view the PWA offline because we are caching the static and CDN assets for the app - but the l ...

  5. svn解决与优化帮助

    1.问题的出现 解决方案: 最后一行不能子目录. 启动的时候也是要根目录的.svnserve -d -r /home/svn/repos [不能是svnserve -d -r /home/svn/re ...

  6. Codeforces Round #254 (Div. 2) B (445B)DZY Loves Chemistry

    推理可得终于结果为2的(n-可分组合数)次方. 问题是怎么求出可分组合数,深搜就可以,当然并查集也能够. AC代码例如以下: 深搜代码!!! #include<iostream> #inc ...

  7. CentOS6.8 SVN服务器管理多项目

    一 需求 一般来说,公司有多个项目,在搭建好SVN服务器之后,就需要使用SVN来实现不在一个项目中的开发人员不能访问其它项目中的代码. 假设: 有3个项目:project1.project2.proj ...

  8. [linux]free命令详解-显示内存的使用情况

    本文部分转载于https://blog.csdn.net/sunansheng/article/details/51942522 free命令可以显示当前系统未使用的和已使用的内存数目,还可以显示被内 ...

  9. flex-direction用法解释

    语法: flex-direction:row | row-reverse | column | column-reverse 默认值:row 适用于:flex容器 继承性:无 动画性:否 计算值:指定 ...

  10. 安装Geo-IP

    安装指令例如以下所看到的,跟着步骤一步一步运行就可以.使用root权限,假设不是的话,请依据情况加上sudo权限命令. cd /tmp wget http://geolite.maxmind.com/ ...