POJ 2031 Building a Space Station【经典最小生成树】
链接:
|
Building a Space Station
Description
You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible. All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively. You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors. You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect. Input
The input consists of multiple data sets. Each data set is given in the following format.
n x1 y1 z1 r1 x2 y2 z2 r2 ... xn yn zn rn The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100. The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character. Each of x, y, z and r is positive and is less than 100.0. The end of the input is indicated by a line containing a zero. Output
For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.
Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000. Sample Input 3 Sample Output 20.000 Source |
|
|
题意:
在三维空间中给你 n 个球体的坐标和半径
如果这些球体间没相通,则需要你去建立一些通道把所有的球体连接起来。
表面相切即可认为相通。
算法:
或者
思路:
首先在各球体间建图,然后再按照边从小到大排序
用并查集查找两点是否属于同一联通分量【即判断这条边的两个球是否相通】
如果不属于同一联通分量,则连接即可
由于每次都是找的最短的边,所以最终所求一定是最短距离了。
再找第一个点距离最近的点,
这个时候连同分量中就有了两个点。
然后再不停的找不在这一连通分量中的距离连通分量最近的一个点
直到所有的点都加入了这一连通分量
由于每次都是找的【距离连通分量整体】最近的点,所以结果必然是最优的了
相关算法学习:
lrj《白书》 P200-P201
最小生成树:
http://blog.csdn.net/cfreezhan/article/details/8189218
并查集:
http://blog.csdn.net/cfreezhan/article/details/8629871
http://blog.csdn.net/cfreezhan/article/category/1219856
Kruskal
/****************************************************
Accepted 248 KB 32 ms C++ 1885 B 2013-07-26 15:47:09
题意:在三维空间中给你 n 个球体的坐标和半径
如果这些球体间没有相通,则需要你去建立一些通道把所有的球体连接起来。
表面相切即可认为相通。 算法:最小生成树Kruskal 复杂度 O(E) 思路:经典最小生成树题目
首先在各球体间建图,然后再按照边从小到大排序
用并查集查找两点是否属于同一联通分量【即判断这条边的两个球是否相通】
如果不属于同一联通分量,则连接即可
由于每次都是找的最短的边,所以最终所求一定是最短距离了。
****************************************************/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std; const int maxn = 110;
int n,m; struct Point{
double x,y,z;
double r;
}p[maxn];
int f[maxn]; /**父亲*/ struct Edge{
int u,v;
double w;
}edge[maxn*maxn]; bool cmp(Edge L1, Edge L2)
{
return L1.w < L2.w;
} double dist(Point A, Point B)
{
return sqrt((A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y) + (A.z-B.z)*(A.z-B.z));
} int find(int x) /** 并查集find*/
{
return x == f[x] ? x : f[x] = find(f[x]);
} double Kruskal() /** 传说中的 Kruskal 算法, 学并查集时居然没有看到Orz*/
{
double ans = 0;
for(int i = 0; i < m; i++) /*排序后遍历的边一定是从小到大的*/
{
int u = find(edge[i].u); /**找祖宗*/
int v = find(edge[i].v); if(u == v) continue; /**祖宗相同, 属于同一连通分量*/
else /**属于不同联通分量, 合并*/
{
ans += edge[i].w;
f[u] = v;
}
}
return ans;
}
int main()
{
while(scanf("%d", &n) != EOF)
{
if(n == 0) break; for(int i = 0; i < n; i++)
{
scanf("%lf%lf%lf%lf", &p[i].x, &p[i].y, &p[i].z, &p[i].r);
f[i] = i; /** 初始化并查集,自己是自己的祖宗*/
} m = 0; /** 初始化边的数量*/
for(int i = 0; i < n-1; i++)
{
for(int j = i+1; j < n; j++)
{
edge[m].u = i;
edge[m].v = j;
edge[m].w = max(0.0, dist(p[i],p[j])-p[i].r-p[j].r); /**如果两个圆相交,则定义距离为 0 */
m++;
}
}
sort(edge,edge+m,cmp); /** 把边按照长度从小到大排序 */ double ans = Kruskal();
printf("%.3lf\n", ans);
}
return 0;
}
/****************************************************
Accepted 252 KB 16 ms C++ 1419 B 2013-07-26 21:32:40
题意:在三维空间中给你 n 个球体的坐标和半径
如果这些球体间没有相通,则需要你去建立一些通道把所有的球体连接起来。
表面相切即可认为相通。 算法:最小生成树 Prime 复杂度 O(n*n) 思路:经典最小生成树题目
首先在各球体间建图,
从第一个点开始加入空的连通分量,
再找第一个点距离最近的点,
这个时候连同分量中就有了两个点。
然后再不停的找不在这一连通分量中的距离连通分量最近的一个点
直到所有的点都加入了这一连通分量
由于每次都是找的【距离连通分量整体】最近的点,所以结果必然是最优的了
****************************************************/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std; const int maxn = 110;
const double DNF = 3000; double w[maxn][maxn];
double d[maxn];
int vis[maxn];
int n; struct Point{
double x,y,z;
double r;
}p[maxn]; double dist(Point A, Point B)
{
return sqrt((A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y) + (A.z-B.z)*(A.z-B.z));
} double Prime()
{
double ans = 0;
for(int i = 0; i < n; i++) d[i] = DNF;
d[0] = 0; /** 第一个点入连通分量*/ memset(vis, 0, sizeof(vis));
for(int i = 0; i < n; i++)
{
int x;
double m = DNF; /** 不断的找下一个距离连通分量最小的点*/
for(int y = 0; y < n; y++) if(!vis[y] && d[y] <= m) m = d[x=y];
vis[x] = 1; /** 标记进入连通分量*/
ans += d[x]; /** 加入总路径 */
for(int y = 0; y < n; y++) if(!vis[y]) /**不断更新剩下未加入连通分量的点与连通分量的最短距离*/
d[y] = min(d[y], w[x][y]);
}
return ans;
} int main()
{
while(scanf("%d", &n) != EOF)
{
if(n == 0) break; for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
w[i][j] = DNF; for(int i = 0; i < n; i++)
scanf("%lf%lf%lf%lf", &p[i].x, &p[i].y, &p[i].z, &p[i].r); for(int i = 0; i < n; i++)
{
for(int j = i; j < n; j++)
{
if(i == j) w[i][j] = 0;
else w[i][j] = max(0.0, dist(p[i], p[j])-p[i].r-p[j].r);
w[j][i] = w[i][j];
}
}
printf("%.3lf\n", Prime());
}
return 0;
}
POJ 2031 Building a Space Station【经典最小生成树】的更多相关文章
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...
- poj 2031 Building a Space Station【最小生成树prime】【模板题】
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5699 Accepte ...
- POJ 2031 Building a Space Station (计算几何+最小生成树)
题目: Description You are a member of the space station engineering team, and are assigned a task in t ...
- POJ 2031 Building a Space Station【最小生成树+简单计算几何】
You are a member of the space station engineering team, and are assigned a task in the construction ...
- poj 2031 Building a Space Station(最小生成树,三维,基础)
只是坐标变成三维得了,而且要减去两边的半径而已 题目 //最小生成树,只是变成三维的了 #define _CRT_SECURE_NO_WARNINGS #include<stdlib.h> ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- POJ 2031 Building a Space Station
3维空间中的最小生成树....好久没碰关于图的东西了..... Building a Space Station Time Limit: 1000MS Memory Li ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- POJ 2031 Building a Space Station (prim裸题)
Description You are a member of the space station engineering team, and are assigned a task in the c ...
随机推荐
- Hive图形化界面客户端
通过JDBC连接HiveServer2的图形界面工具,包括:SQuirrel SQL Client.Oracle SQL Developer以及DbVisualizer SQuirrel SQL Cl ...
- 解决The prefix 'context' for element 'context:component-scan' is not bound
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w ...
- jmap -histo pid 输出的[C [B [I [S methodKlass的含义
转载于https://yq.aliyun.com/articles/43542 摘要: jmap -histo pid 输出结果样式 num #instances #byte ...
- Keepalived高可用集群应用
Keepalived高可用集群应用 1.keepalived服务说明 1.1.keepalived介绍 Keepalived是一个用C语言编写的路由软件.该项目的主要目标是为Linux系统和基于Lin ...
- IDEA如何打包可运行jar的一个问题
转载:http://bglmmz.iteye.com/blog/2058785 背景: 有时候,我们会用IDEA来开发一些小工具,需要打成可运行的JAR包:或者某些项目不是WEB应用,纯粹是后台应用, ...
- git学习——记录每次更新到仓库
记录每次更新到仓库 工作目录下面的所有文件都不外乎这两种状态:已跟踪或未跟踪.已跟踪的文件是指本来就被纳入版本控制管理的文件,在上次快照中有它们的记录,工作一段时间后,它们的状态可能是未更新,已修改或 ...
- webstrom 很卡 底下一直走进度条 scanning files to index
最近工作总会遇到一些问题 先说说webstrom 其中有一次仅仅开了两个项目 电脑风扇就各种轰鸣 各种重启 安装卸载webstrom 都没有作用 好吧 其实解决很简单 选择一个文件夹,右键, Mark ...
- Linux常见服务器——DHCP服务器的搭建
一.基础知识: 1.DHCP简介: DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)通常被应用在大型的局域网络环境中,主要作用是集中的管理.分配IP ...
- git个人使用总结(界面版)
最近开始使用GIT来管理测试文档,从0到1开始使用git 1.首先,使用网页登录GIT后,创建项目 2.创建项目后,需要配置一下访问者权限 3.然后在网页版GIT复制地址,git clone到 本地 ...
- 奥巴马(Obama)获胜演讲全文[中英对照]+高清视频下载
http://www.amznz.com/obama-speech/如果还有人对美国是否凡事都有可能存疑,还有人怀疑美国奠基者的梦想在我们所处的时代是否依然鲜活,还有人质疑我们的民主制度的力量,那么今 ...