题目大意:
  有两个城镇$A$和$B$,有$n(n\le10^6)$辆车从$A$地出发前往$B$再返回$A$地。两地之间的行驶时间为$s(s\le10^9)$,每辆车从$A$地出发的最早时间是$t_i(0\le t_1\le t_2\le\ldots\le t_n\le10^9)$。行驶过程中需要保证每辆车出发时间至少相差$1$,且每个时刻运行的车都是同一个方向,问所有车都返回$A$地至少需要多少时间?

思路:
  “行驶过程中需要保证每辆车出发时间至少相差$1$”相当于令$t_i=\max(t_i,t_{i-1}+1)$。
  “每个时刻运行的车都是同一个方向”说明我们只需要对这些车分批,一批往返结束后下一批开始往返(一批车留在$B$地,另一批从$A$地过来一定存在一种等价的方案使得第一批往返完成后第二批出发)。
  有了以上两个信息,不难得到状态转移方程$f_i=\min\{\max(t_i,f_j+i-j-1)+2s+i-j-1\}$。
  由于$f_j+i-j-1$是单调递增的,所以$\max(t_i,f_j+i-j-1)$中一定可以找到一个转折点$j$使得$j$的左边取到$t_i-i$,右边取到$f_j-j-1$。左边是定值因此$j$越大越好,右边相当于求区间$[j,i)$的最小值,用树状数组维护即可,时间复杂度$O(n\log n)$。已经能AC了。
  事实上,因为$f_i$的增长速度$\ge2i$,所以取最左边即转折点的一定更优,这样就可以省掉树状数组。考虑到转折点位置是单调递增的,因此只需要每次把上一次的转折点位置记录下来,累加到当前转折点即可。时间复杂度$O(n)$。

 #include<cstdio>
#include<cctype>
#include<climits>
#include<algorithm>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=1e6+;
int t[N]={-};
int64 f[N];
int main() {
const int n=getint(),s=getint();
for(register int i=,j=;i<=n;i++) {
f[i]=LLONG_MAX;
t[i]=std::max(getint(),t[i-]+);
for(j--;j<i&&std::max((int64)t[i],f[j]+i-j-)+s*+i-j-<f[i];j++) {
f[i]=std::max((int64)t[i],f[j]+i-j-)+s*+i-j-;
}
}
printf("%lld\n",f[n]);
return ;
}

[POI2014]Freight的更多相关文章

  1. BZOJ3830 : [Poi2014]Freight

    首先为了保证发车时间都不同,T[i]=max(T[i],T[i-1]+1) 然后设f[i]表示前i列车回来的最早时刻 f[i]=min(max(T[i],f[j]+i-j-1)+s*2+i-j-1) ...

  2. bzoj 3830: [Poi2014]Freight【dp】

    参考:https://blog.csdn.net/zqh_wz/article/details/52953516 妙啊 看成分段问题,因为火车只能一批一批的走(易证= =)设f[i]为到i为止的车都走 ...

  3. POI2014题解

    POI2014题解 [BZOJ3521][Poi2014]Salad Bar 把p当作\(1\),把j当作\(-1\),然后做一遍前缀和. 一个合法区间\([l,r]\)要满足条件就需要满足所有前缀和 ...

  4. Work at DP

    转载请注明出处:http://www.cnblogs.com/TSHugh/p/8858805.html Prepared: (无notes的波兰题目的notes见我的波兰题目补全计划)BZOJ #3 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. BZOJ 3524: [Poi2014]Couriers [主席树]

    3524: [Poi2014]Couriers Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1892  Solved: 683[Submit][St ...

  7. BZOJ 3524: [Poi2014]Couriers

    3524: [Poi2014]Couriers Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1905  Solved: 691[Submit][St ...

  8. [BZOJ3872][Poi2014]Ant colony

    [BZOJ3872][Poi2014]Ant colony 试题描述 There is an entrance to the ant hill in every chamber with only o ...

  9. Simulating a Freight robot in Gazebo

    Installation Before installing the simulation environment, make sure your desktop is setup with a st ...

随机推荐

  1. 一个符号冲突导致的core分析

    问题描述: 修改跟踪程序(Trace)支持IPV6时,发现程序启动后正常,但是客户端一旦下发查询条件进行跟踪,Trace程序就直接coredump! (gdb) bt # 0x00007f7dab9e ...

  2. 网络--TIME_WAIT状态

    MSL时间 MSL就是maximum segment lifetime(最大分节生命期),这是一个IP数据包能在互联网上生存的最长时间,超过这个时间IP数据包将在网络中消失 .MSL在RFC 1122 ...

  3. HDU 4669 Mutiples on a circle 动态规划

    参考了官方题解给的方法: 对于处理循环,官方给了一种很巧妙的方法: #include <cstdio> #include <cstring> #include <cstd ...

  4. oracle定时job粗解

    其中一篇随笔我写了oracle的存储过程大概的介绍,存储过程除了自身有in的param,来进行程序调用处理之外,还可以通过定时任务的方式调用来执行. 应用场景: 数据同步:有两个显示菜单,“信息编辑” ...

  5. PAT 1050 螺旋矩阵

    https://pintia.cn/problem-sets/994805260223102976/problems/994805275146436608 本题要求将给定的 N 个正整数按非递增的顺序 ...

  6. 【干货】2个小时教你hexo博客添加评论、打赏、RSS等功能 (转)

    备注:该教程基于Hexo 2.x版本,目前Hexo是3.x版本,照本教程实现有可能会出现404错误,笔者目前还未找时间去解决,待笔者找时间解决该问题后,再写一篇该问题的解决教程,给各位读者带来困扰,还 ...

  7. 【bzoj4818】[Sdoi2017]序列计数 矩阵乘法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6825132.html 题目描述 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的 ...

  8. vi - vim的一些遗忘点

    1. vi 供分为三种模式:一般模式.编辑模式和命令行模式.i / Esc + :wq :q :q! 使vi在一般模式与编辑模式中来回转换. /word 向下寻找一个名称为word的字符串: ?wor ...

  9. Using Let’s Encrypt for free SSL Certs with Netscaler

    Using Let’s Encrypt for free SSL Certs with Netscaler If you haven’t heard, Let’s Encrypt (https://l ...

  10. BZOJ5158 [Tjoi2014]Alice and Bob 【贪心 + 拓扑】

    题目链接 BZOJ5158 题解 题中所给的最长上升子序列其实就是一个限制条件 我们要构造出最大的以\(i\)开头的最长下降子序列,就需要编号大的点的权值尽量小 相同时当然就没有贡献,所以我们不妨令权 ...