算法训练 Cowboys(DP)
测试样例二中,可能的初始排列为:"AABBB"和"BABBA"。
#include<bits/stdc++.h>
using namespace std;
long long dp[][]={};
int main(){
dp[][]=;
dp[][]=;
dp[][]=;
dp[][]=;
for(int i=;i<=;i++){ //打表dp情况数
dp[i][]=dp[i-][];
dp[i][]=dp[i-][];
dp[i][]=dp[i-][]+dp[i-][];
dp[i][]=dp[i-][];
}
string target;
int length,i;
while(cin>>target){
length=target.size();
string tmp1="",tmp2=""; //检查是否存在全A或者全B情况
for(int k=;i<length;k++){
tmp1+="A";
tmp2+="B";
}
if(target==tmp1||target==tmp2){
cout<<<<endl;
return ;
}
if(length%==){
tmp1="";
tmp2="";
for(int i=;i<=length/;i++){ //检查是否全串都是一个BA串!
tmp1+="AB";
tmp2+="BA";
}
if(tmp1==target||tmp2==target){
cout<<dp[length/-][]+dp[length/-][]<<endl;
return ;
}
}
for(i=;i<length;i++){ //找到第一组BA开始位置
if(target[i]=='B'&&target[(i+)%length]=='A'){
break;
}
} for(int j=i;;j=(j+)%length){ //找到第一组BA结束位置
if(target[j]!='B'||target[(j+)%length]!='A'){
i=j;
break;
}
}
int times=,start,end;
long long ans=;
for(int j=i;j<i+length;j++){
if(target[j%length]=='B'&&target[(j+)%length]=='A'){
if(times==){
start=(j+length-)%length; //记录开始位置,记得-1
}
times++;
j++; //循环中有++那么这里再++就够了
}
else {
if(times!=){ //如果已经记录了BA组数
end=j%length; //记录结束位置
if(target[start]=='A'&&target[end]=='A') ans*=dp[times][];
else if(target[start]=='A'&&target[end]=='B') ans*=dp[times][];
else if(target[start]=='B'&&target[end]=='A') ans*=dp[times][];
else if(target[start]=='B'&&target[end]=='B') ans*=dp[times][];
times=; //一个串记录的组数清零
}
}
}
if(times!=){ //别忘了最后一组!看我实现构造的方法,最后一组是被忽略掉的
end=i%length;
if(target[start]=='A'&&target[end]=='A') ans*=dp[times][];
else if(target[start]=='A'&&target[end]=='B') ans*=dp[times][];
else if(target[start]=='B'&&target[end]=='A') ans*=dp[times][];
else if(target[start]=='B'&&target[end]=='B') ans*=dp[times][];
} cout<<ans<<endl;
}
return ;
}
没看懂系列(((((
算法训练 Cowboys(DP)的更多相关文章
- Java实现 蓝桥杯 算法训练 Cowboys
试题 算法训练 Cowboys 问题描述 一个间不容发的时刻:n个牛仔站立于一个环中,并且每个牛仔都用左轮手枪指着他旁边的人!每个牛仔指着他顺时针或者逆时针方向上的相邻的人.正如很多西部片那样,在这一 ...
- 算法训练 最大的算式 DP
算法训练 最大的算式 时间限制:1.0s 内存限制:256.0MB 问题描述 题目很简单,给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果 ...
- 算法训练 K好数
算法训练 K好数 时间限制:1.0s 内存限制:256.0MB 问题描述 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数.求L位K进制数中K好数 ...
- 算法训练 K好数 解析
算法训练 K好数 时间限制:1.0s 内存限制:256.0MB 提交此题 锦囊1 锦囊2 问题描述 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数.求L位K ...
- 蓝桥杯 算法训练 ALGO-116 最大的算式
算法训练 最大的算式 时间限制:1.0s 内存限制:256.0MB 问题描述 题目很简单,给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果尽量 ...
- 算法训练 K好数(C/C++)AC码
蓝桥杯 算法训练 K好数 AC码 题目要求: 算法训练 K好数 问题描述 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数.求L位K进制数中K好数的数目.例如 ...
- 蓝桥杯 算法训练 ALGO-36 传纸条
算法训练 传纸条 时间限制:1.0s 内存限制:512.0MB 问题描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而 ...
- 蓝桥杯 算法训练 ALGO-21 装箱问题
算法训练 装箱问题 时间限制:1.0s 内存限制:256.0MB 问题描述 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每 ...
- [算法模版]子序列DP
[算法模版]子序列DP 如何求本质不同子序列个数? 朴素DP 复杂度为\(O(nq)\).其中\(q\)为字符集大小. \(dp[i]\)代表以第\(i\)个数结尾的本质不同子序列个数.注意,这里对于 ...
随机推荐
- Linux 驱动编程知识
1.包含的头文件 1.1 GPIO相关操作 #include <asm/arch/gpio.h>
- Mina2中IoService
Apache MINA 2 是一个开发高性能和高可伸缩性网络应用程序的网络应用框架.它提供了一个抽象的事件驱动的异步 API,可以使用 TCP/IP.UDP/IP.串口和虚拟机内部的管道等传输方式. ...
- 无法删除image报rbd: error: image still has watchers解决方法
标签(空格分隔): ceph,ceph运维,rbd 解决思路: 在Ceph集群日常运维中,管理员可能会遇到有的image删除不了的情况: 1) 由于image下有快照信息,只需要先将快照信息清除,然后 ...
- mybatis 学习五 动态SQL语句
3.1 selectKey 标签 在insert语句中,在Oracle经常使用序列.在MySQL中使用函数来自动生成插入表的主键,而且需要方法能返回这个生成主键.使用myBatis的selectKey ...
- mybatis---demo1--(n-n)----bai
实体类1: package com.etc.entity; import java.util.List; public class RoleInfo { private int rid; privat ...
- tomcat中间件配置说明
因为Tomcat 技术先进.性能稳定,而且免费,因而深受Java 爱好者的喜爱并得到了部分软件开发商的认可,成为目前比较流行的Web 应用服务器.目前最新版本是8.0. 方法/步骤 一.tomca ...
- ClientDataSet + DataSetProvider + FDQuery 的bug
ClientDataSet + DataSetProvider +FDQuery 有 bug ClientDataSet + DataSetProvider +ADOQuery正常. Client ...
- kvm iptables 3306端口
# iptables -t nat -A PREROUTING -p TCP --dport 3306 -j DNAT --to-destination 192.168.122.102:3306# i ...
- 基于aspectj的aop注解操作
- VS项目模板文件位置
目录: D:\Users\lyn\Documents\Visual Studio 2012\Templates\ProjectTemplates 模板文件完整路径: D:\Users\lyn\Do ...