题目链接

\(Description\)

给定一张无向带边权图(存在自环和重边)。求一条1->n的路径,使得路径经过边的权值的Xor和最大。可重复经过点/边,且边权和计算多次。

\(Solution\)

来找一些性质。从一个点出发,到达任意一个点后原路返回,那么得到的和仍为0。但是如果走完一个环后原路返回,则会得到这个环的Xor和。

那么从1点就可以得到任何一个环的Xor和。我们还需要一条1->n的路径,使得搭配上某些环后答案最大。于是我们就可以对环的权值构造线性基,拿路径Xor和在上面求最大值。

选取哪条路径呢?如果存在多条1->n的路径,实际上任意两条也构成了一个环,我们也已统计在内了。

即我们可以任意选取一条1->n的路径(反复走显然没啥用),如果它不更优,会在与某个环Xor后换成一条更优的路径。(同理,对于路径上点的选择也是任意的。所有环都要算上)

//6016kb	500ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 100000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=5e4+5,M=2e5+5; int n,Enum,H[N],nxt[M],to[M];
LL base[69],len[M],val[N];
bool vis[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline LL readll()
{
LL now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(LL w,int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, len[Enum]=w;
}
inline void Insert(LL x)
{
for(int i=60; ~i; --i)
if(x&(1ll<<i))
{
if(base[i]) x^=base[i];
else {base[i]=x; break;}
}
}
inline LL Query(LL x)
{
for(int i=60; ~i; --i)
x=std::max(x,x^base[i]);
return x;
}
void DFS(int x,int f)
{
vis[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]]) val[v]=val[x]^len[i], DFS(v,x);
else if(v!=f) Insert(val[v]^val[x]^len[i]);
} int main()
{
n=read();
for(int i=1,m=read(); i<=m; ++i) AddEdge(readll(),read(),read());
DFS(1,1);
printf("%lld\n",Query(val[n])); return 0;
}

BZOJ.2115.[WC2011]Xor(线性基)的更多相关文章

  1. BZOJ 2115: [Wc2011] Xor 线性基 dfs

    https://www.lydsy.com/JudgeOnline/problem.php?id=2115 每一条从1到n的道路都可以表示为一条从1到n的道路异或若干个环的异或值. 那么把全部的环丢到 ...

  2. BZOJ 2115 [Wc2011] Xor ——线性基

    [题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...

  3. BZOJ 2115: [Wc2011] Xor DFS + 线性基

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Description Input 第一行包含两个整数N和 M, 表示该无向图中 ...

  4. BZOJ 2115: [Wc2011] Xor

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 2794  Solved: 1184 [Submit][Stat ...

  5. bzoj 2115: [Wc2011] Xor xor高斯消元

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] ...

  6. bzoj 2115: [Wc2011] Xor【线性基+dfs】

    -老是想到最长路上 其实可以这样:把每个环的xor和都存起来,然后任选一条1到n的路径的xor和ans,答案就是这个ans在环的线性基上跑贪心. 为什么是对的--因为可以重边而且是无相连通的,并且对于 ...

  7. bzoj 2115 [Wc2011] Xor 路径最大异或和 线性基

    题目链接 题意 给定一个 \(n(n\le 50000)\) 个点 \(m(m\le 100000)\) 条边的无向图,每条边上有一个权值.请你求一条从 \(1\)到\(n\)的路径,使得路径上的边的 ...

  8. BZOJ2115:[WC2011] Xor(线性基)

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  9. BZOJ - 2115 独立回路 线性基

    题意:给定一个图集\((V,E)\),求路径\(1...n\)的最大异或和,其中重复经过的部分也会重复异或 所求既任意一条\(1...n\)的路径的异或和,再异或上任意独立回路的组合的异或和(仔细想想 ...

随机推荐

  1. 课外知识----base64加密

    每3个字符产生4位的base64字符,不足3个字符,将用“=”补齐至4位base64字符 例如 00--->  MDA= 000--->MDAw base64加密特点 加密后的字符数是4的 ...

  2. C++ Primer 笔记——拷贝控制

    1.如果构造函数的第一个参数是自身类类型的引用,且任何额外参数都有默认值,则此构造函数是拷贝构造函数.拷贝构造函数的第一个参数必须是引用类型(否则会无限循环的调用拷贝构造函数). 2.如果没有为一个类 ...

  3. windows下bat批处理执行sql语句__Mysql

    直接上代码: @ECHO OFF SET dbhost=主机名(例如:127.0.0.1)SET dbuser=用户名(例如:root)SET dbpasswd=用户密码(例如:root)SET db ...

  4. Oracle查询CLOB字段类型的内容

    select dbms_lob.substr(lo.ldtext) as text from longdescription lo

  5. android 如何调用 隐藏的 API 接口

    怎样查看并且使用 Android 隐藏 API 和内部 APIhttps://www.jianshu.com/p/fbf45770ecc8 android 隐藏API显式调用以及内部资源使用方法htt ...

  6. C#获取一周的工作日显示(星期几)

    代码如下: gridBandW1.Caption = System.Globalization.CultureInfo.CurrentCulture.DateTimeFormat.GetDayName ...

  7. lrzsz linix 远程文件传输工具。

    安装方法 #yum install lrzsz -y 使用方法 #rz -y 上传指定文档到当前目录

  8. 【转】使用Jasob混淆javascript代码

    在平常的web开发中,我们时常需要写一些js的类库,当我们发布自己产品的时候,不得不把源代码分发出去:但是这样就会泄露自己的代码.今天使用了一下Jasob感觉不错: 使用Jasob,我们的JavaSc ...

  9. 一起学Hadoop——使用IDEA编写第一个MapReduce程序(Java和Python)

    上一篇我们学习了MapReduce的原理,今天我们使用代码来加深对MapReduce原理的理解. wordcount是Hadoop入门的经典例子,我们也不能免俗,也使用这个例子作为学习Hadoop的第 ...

  10. 【Android】android文件的写入与读取---简单的文本读写context.openFileInput() context.openFileOutput()

    最终效果图,点击save会保存到文件中,点击show会从文件中读取出内容并显示. main.xml <?xml version="1.0" encoding="ut ...