PAT A1099 Build A Binary Search Tree (30 分)——二叉搜索树,中序遍历,层序遍历
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.

Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index, provided that the nodes are numbered from 0 to N−1, and 0 is always the root. If one child is missing, then −1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42
#include <stdio.h>
#include <algorithm>
#include <set>
#include <vector>
#include <queue>
using namespace std;
const int maxn = ;
int n;
struct node{
int data;
int l=-,r=-;
}bst[maxn];
int index=;
int q[maxn];
void inorder(int root){
if(bst[root].l!=-) inorder(bst[root].l);
bst[root].data = q[index++];
if(bst[root].r!=-) inorder(bst[root].r);
}
void level(int root){
queue<int> que;
int cnt=;
que.push(root);
while(!que.empty()){
int now=que.front();
que.pop();
printf("%d",bst[now].data);
cnt++;
if(cnt!=n) printf(" ");
if(bst[now].l!=-) que.push(bst[now].l);
if(bst[now].r!=-) que.push(bst[now].r);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<n;i++){
int l,r;
scanf("%d %d",&l,&r);
bst[i].l=l;
bst[i].r=r;
}
for(int i=;i<n;i++){
scanf("%d",&q[i]);
}
sort(q,q+n);
inorder();
level();
}
注意点:其实很简单的题目,又一次倒在了递归上。知道要把给定数据sort,但没想sort完后就是这棵树的中序遍历结果,只要把正常中序遍历时的打印改成赋值就能得到那棵树了。没想到中序遍历,所以自己一直在想怎么把这个有序序列一个个填到树里去,一直也没搞明白,看这题通过率0.5多,我还不会做,凉了。
看到树的题目,一般都会要建树,遍历,而对bst,一般都是要对给定序列排序的,这样能得到他的中序遍历结果,有助于建树
PAT A1099 Build A Binary Search Tree (30 分)——二叉搜索树,中序遍历,层序遍历的更多相关文章
- 1064 Complete Binary Search Tree (30分)(已知中序输出层序遍历)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)
1064 Complete Binary Search Tree (30 分) A Binary Search Tree (BST) is recursively defined as a bin ...
- PAT-1099(Build A Binary Search Tree)Java实现+二叉排序树的中序遍历和层次遍历
Build A Binary Search Tree PAT-1099 本题有意思的一个点就是:题目已经给出了一颗排序二叉树的结构,需要根据这个结构和中序遍历序列重构一棵二叉排序树. 解法:可以根据中 ...
- LeetCode 501. Find Mode in Binary Search Tree (找到二叉搜索树的众数)
Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred ...
- LeetCode第[98]题(Java):Validate Binary Search Tree(验证二叉搜索树)
题目:验证二叉搜索树 难度:Medium 题目内容: Given a binary tree, determine if it is a valid binary search tree (BST). ...
- LeetCode OJ:Recover Binary Search Tree(恢复二叉搜索树)
Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...
- LeetCode OJ:Validate Binary Search Tree(合法的二叉搜索树)
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...
- LeetCode OJ:Binary Search Tree Iterator(二叉搜索树迭代器)
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the ro ...
- [LeetCode] 98. Validate Binary Search Tree(是否是二叉搜索树) ☆☆☆
描述 解析 二叉搜索树,其实就是节点n的左孩子所在的树,每个节点都小于节点n. 节点n的右孩子所在的树,每个节点都大于节点n. 定义子树的最大最小值 比如:左孩子要小于父节点:左孩子n的右孩子要大于n ...
随机推荐
- Java--实现单点登录
1 什么是单点登陆 单点登录(Single Sign On),简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用 ...
- Why is one loop so much slower than two loops?
Question: Suppose a1, b1, c1, and d1 point to heap memory and my numerical code has the following co ...
- DotNetCore 结合 Nginx 将网站部署到阿里云
基础环境配置 域名和服务器请先自行购买 基于 云服务器ECS 创建一个应用实例,选择系统镜像为 Ubuntu 16.04,在本机通过 SSH 进行远程连接,并进行相关配置 ssh root@http: ...
- Django Rest Framework之认证
代码基本结构 url.py: from django.conf.urls import url, include from web.views.s1_api import TestView urlpa ...
- 20个Chrome DevTools调试技巧
译者按: Chrome DevTools很强大,甚至可以替代IDE了! 原文: Art of debugging with Chrome DevTools 译者: Fundebug 为了保证可读性,本 ...
- python爬虫实例--网易云音乐排行榜爬虫
网易云音乐,以前是有个api 链接的json下载的,现在没了, 只有音乐id,title , 只能看播放请求了, 但是播放请求都是加密的值,好坑... 进过各种努力, 终于找到了个大神写的博客,3.6 ...
- C++解析 xml,用到pugixml库
参考网站: https://www.cnblogs.com/haomiao/p/5041065.html https://blog.csdn.net/iot_change/article/detail ...
- 消除2个按钮之间1px细节引起的冲突
1.代码 <!doctype html> <html lang="en"> <head> <meta charset="UTF- ...
- 使用CSS兄弟选择器完成复杂垂直边距(vertical margins)的设计
-------------------sibling选择器如何在完成复杂设计要求的同时,保持CSS可读 这是web前端开发过程中开始简单逐步变的复杂的例子之一:将一篇文章中的所有元素应用垂直边距(ve ...
- cmake:善用find_package()提高效率暨查找JNI支持
cmake提供了很多实用的cmake-modules,通过find_package()命令调用这些modules,用于写CMakeLists.txt脚本时方便的查找依赖的库或其他编译相关的信息,善用这 ...