崩 oj 1768 最大子矩阵
描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
的最大子矩阵是
9 2 -4 1 -1 8
这个子矩阵的大小是15。
输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
输出
输出最大子矩阵的大小。
=======================================================================================================================================================================================================================
刚拿到这道题的时候 一点思路也没有
所以....
我搜题解去了
(好吧...这样不好)
发现一种更有意思的东西
矩阵前缀和
在这里先简单点儿
--------------------------------------------
就在下面
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(a:元素,sum:从a(1,1)到a(i,j)所有值的和,就是前缀和。)

边读入边求前缀和(sum),用这个公式来求:①+②+③-④ 得出sum(5,3)=a(5,3)+sum(4,2)+sum(5,2)-sum(4,2);
好像有点递推思想呢?
然后四重循环暴力枚举所有子矩阵,找到最大值!

公式:①-②-③+④,枚举出(2,2)到(5,3)的矩阵大小t=sum(5,3)-sum(5,1)-sum(1,3)+sum(1,1),更新最大值。
这时候 就稍稍有点思路了
以下是代码:
#include<cstdio>
#include<algorithm>
using namespace std;
int n,b[110][110],a[110][110],maxn,q,w,e,r;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
scanf("%d",&a[i][j]);
b[i][j]= a[i][j] + b[i-1][j] + b[i][j-1] - b[i-1][j-1]; //算出1.1到i.j矩阵所有元素的和
}
for(q = 1;q <= n;++q)
for(w = 1;w <= n;++w)
for(e = 1;e <= q;++e)
for(r = 1;r <= w;++r)
{
maxn=max(maxn,b[q][w] + b[e-1][r-1] - b[q][r-1] - b[e-1][w]); //反向想 算出e.r到q.w之间矩阵的元素和 并和先已知的最大值比较 若比它大 就替换
printf("%d",maxn);
return 0;
}
无后效性:
每个位置上的元素是确定的 得到的矩阵的最大值不会影响元素的值
崩 oj 1768 最大子矩阵的更多相关文章
- NOI题库 1768最大子矩阵 题解
NOI题库 1768最大子矩阵 题解 总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大 ...
- 1768:最大子矩阵(NOIP2014初赛最后一题)
1768:最大子矩阵 总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如 ...
- noi 1768 最大子矩阵
题目链接:http://noi.openjudge.cn/ch0206/1768/ 可能是数据修改了吧,O(n6)过不了了. 主要是在求一个矩阵的和时,重复计算了很多次. 矩阵首先压缩一下.在输入的时 ...
- [itint5]最大子矩阵和
http://www.itint5.com/oj/#39 最大子矩阵和,复杂度O(n^3).利用了最大子段和的方法. int maxRectSum(vector<vector<int> ...
- #DP# ----- OpenJudge最大子矩阵
OpenJudge 1768:最大子矩阵 总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 ...
- NOI 动态规划题集
noi 1996 登山 noi 8780 拦截导弹 noi 4977 怪盗基德的滑翔翼 noi 6045 开餐馆 noi 2718 移动路线 noi 2728 摘花生 noi 2985 数字组合 no ...
- NOI题库刷题日志 (贪心篇题解)
这段时间在NOI题库上刷了刷题,来写点心得和题解 一.寻找平面上的极大点 2704:寻找平面上的极大点 总时间限制: 1000ms 内存限制: 65536kB 描述 在一个平面上,如果有两个点( ...
- openjudge-NOI 2.6基本算法之动态规划 专题题解目录
1.1759 最长上升子序列 2.1768 最大子矩阵 3.1775 采药 4.1808 公共子序列 5.1944 吃糖果 6.1996 登山 7.2000 最长公共子上升序列 8.2718 移动路线 ...
- dp专练
dp练习. codevs 1048 石子归并 区间dp #include<cstdio> #include<algorithm> #include<cstring> ...
随机推荐
- 使用Nexus2.x为Maven3.x搭建私服构件仓库
前言 在笔者的前一篇博文<Use Maven3.x>中,笔者详细的讲解了如何通过使用Maven3.x来构建及管理你的项目.其中笔者提到过些关于私服的概念,但却没有明确的对私服做出详细的阐述 ...
- 【Java并发编程】22、Exchanger源码解析(JDK1.7)
Exchanger是双向的数据传输,2个线程在一个同步点,交换数据.先到的线程会等待第二个线程执行exchangeSynchronousQueue,是2个线程之间单向的数据传输,一个put,一个tak ...
- 性能监控(2)–linux下的vmstat命令
vmstat它可以统计CPU.内存使用情况.swap使用情况等信息.它还可以指定采样周期和次数.
- 30个极大提高开发效率的Visual Studio Code插件
译者按: 看完这篇文章,我打算从 Sublime Text 转到 Visual Studio Code 了! 原文: Immensely upgrade your development enviro ...
- springboot 配置文件说明
你可以在自己创建的组件上使用@ConfigurationProperties注解,而Spring Boot自动配置的很多组件也添加了@ConfigurationProperties注解,可以通过Spr ...
- spring配置log4j
1.引入log4j-xxx.jar包,buildpath. 2.在项目的根目录下新建resources名的文件夹,注意是source folder,并新建log4j.properties文件 3.在l ...
- Salesforce的基础用户界面定制
Salesforce的用户界面 Salesforce的用户界面易于定制.本文将讲述如何定制: 主菜单和选项卡 自定义按钮和链接 视图列表 页面布局 定制主菜单和选项卡 Salesforce的主菜单默认 ...
- engineecms——工程师知识管理系统,带文档协作和状态和流程
工程师们工作的平台,需要对图纸资料按工程项目名称,按工程项目阶段,按参与设计的专业等来分放. 而设计成果需要进行校审,才能算最终成果,也就是要具备状态和流程功能,这个一般网盘资源存储是做不到的. 一些 ...
- HDFS Sink使用技巧
1.文件滚动策略 在HDFS Sink的文件滚动就是文件生成,即关闭当前文件,创建新文件.它的滚动策略由以下几个属性控制: hdfs.rollInterval 基于时间间隔来进行文件滚动,默认是30, ...
- 动态导入模块:__import__、importlib、动态导入的使用场景
相关内容: __import__ importlib 动态导入的使用场景 首发时间:2018-02-23 16:06 __import__: 功能: 是一个函数,可以在需要的时候动态导入模块 使用: ...