核心思想是从已知的最短路径推算未知的最短路径。

添加程序:

 #ifndef GRAPH_H
#define GRAPH_H #include "Object.h"
#include "SharedPointer.h"
#include "Array.h"
#include "DynamicArray.h"
#include "LinkQueue.h"
#include "LinkStack.h"
#include "Sort.h" namespace DTLib
{ template < typename E >
struct Edge : public Object
{
int b;
int e;
E data; Edge(int i=-, int j=-)
{
b = i;
e = j;
} Edge(int i, int j, const E& value)
{
b = i;
e = j;
data = value;
} bool operator == (const Edge<E>& obj)
{
return (b == obj.b) && (e == obj.e); //在这里不关注权值大小
} bool operator != (const Edge<E>& obj)
{
return !(*this == obj);
} bool operator < (const Edge<E>& obj)
{
return (data < obj.data);
} bool operator > (const Edge<E>& obj)
{
return (data > obj.data);
}
}; template < typename V, typename E >
class Graph : public Object
{
protected:
template < typename T >
DynamicArray<T>* toArray(LinkQueue<T>& queue)
{
DynamicArray<T>* ret = new DynamicArray<T>(queue.length()); if( ret != NULL )
{
for(int i=; i<ret->length(); i++, queue.remove())
{
ret->set(i, queue.front());
}
}
else
{
THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create ret object...");
} return ret;
} SharedPointer< Array<Edge<E> > > getUndirectedEdges()
{
DynamicArray<Edge<E>>* ret = NULL; if( asUndirected() )
{
LinkQueue<Edge<E>> queue; for(int i=; i<vCount(); i++)
{
for(int j=i; j<vCount(); j++)
{
if( isAdjacent(i, j) )
{
queue.add(Edge<E>(i, j, getEdge(i, j)));
}
}
} ret = toArray(queue);
}
else
{
THROW_EXCEPTION(InvalidOperationException, "This function is for undirected graph only...");
} return ret;
} int find(Array<int>& p, int v)
{
while( p[v] != -)
{
v = p[v];
} return v;
}
public:
virtual V getVertex(int i) = ;
virtual bool getVertex(int i, V& value) = ;
virtual bool setVertex(int i, const V& value) = ;
virtual SharedPointer< Array<int> > getAdjacent(int i) = ;
virtual bool isAdjacent(int i, int j) = ;
virtual E getEdge(int i, int j) = ;
virtual bool getEdge(int i, int j, E& value) = ;
virtual bool setEdge(int i, int j, const E& value) = ;
virtual bool removeEdge(int i, int j) = ;
virtual int vCount() = ;
virtual int eCount() = ;
virtual int OD(int i) = ;
virtual int ID(int i) = ; virtual int TD(int i)
{
return ID(i) + OD(i);
} bool asUndirected()
{
bool ret = true; for(int i=; i<vCount(); i++)
{
for(int j=; j<vCount(); j++)
{
if( isAdjacent(i, j) )
{
ret = ret && isAdjacent(j, i) && (getEdge(i, j) == getEdge(j, i));
}
}
} return ret;
} SharedPointer< Array< Edge<E > > > prim(const E& LIMIT, const bool MINIUM = true) //参数为理论上的最大权值
{
LinkQueue< Edge<E> > ret; if( asUndirected() )
{
DynamicArray<int> adjVex(vCount());
DynamicArray<bool> mark(vCount());
DynamicArray<E> cost(vCount());
SharedPointer< Array<int> > aj = NULL;
bool end = false;
int v = ; for(int i=; i<vCount(); i++)
{
adjVex[i] = -;
mark[i] = false;
cost[i] = LIMIT;
} mark[v] = true; aj = getAdjacent(v); for(int j=; j<aj->length(); j++)
{
cost[(*aj)[j]] = getEdge(v, (*aj)[j]);
adjVex[(*aj)[j]] = v;
} for(int i=; (i<vCount()) && !end; i++)
{
E m = LIMIT;
int k = -; for(int j=; j<vCount(); j++)
{
if( !mark[j] && (MINIUM ? (cost[j] < m) : (cost[j] > m)))
{
m = cost[j];
k = j;
}
} end = (k == -); if( !end )
{
ret.add(Edge<E>(adjVex[k], k, getEdge(adjVex[k], k))); mark[k] = true; aj = getAdjacent(k); for(int j=; j<aj->length(); j++)
{
if( !mark[(*aj)[j]] && (MINIUM ? (getEdge(k, (*aj)[j]) < cost[(*aj)[j]]) : (getEdge(k, (*aj)[j]) > cost[(*aj)[j]])) )
{
cost[(*aj)[j]] = getEdge(k, (*aj)[j]);
adjVex[(*aj)[j]] = k;
}
}
}
}
}
else
{
THROW_EXCEPTION(InvalidOperationException, "Prim operator is for undirected graph only...");
} if( ret.length() != (vCount() - ) )
{
THROW_EXCEPTION(InvalidOperationException, "No enough edge for prim operation...");
} return toArray(ret);
} SharedPointer< Array<Edge<E> > > kruskal(const bool MINMUM = true)
{
LinkQueue< Edge<E> > ret; SharedPointer< Array< Edge<E> > > edges = getUndirectedEdges(); DynamicArray<int> p(vCount()); //前驱标记数组 for(int i=; i<p.length(); i++)
{
p[i] = -;
} Sort::Shell(*edges, MINMUM); for(int i=; (i<edges->length()) && (ret.length() < (vCount() - )); i++)
{
int b = find(p, (*edges)[i].b);
int e = find(p, (*edges)[i].e); if( b != e )
{
p[e] = b; ret.add((*edges)[i]);
}
} if( ret.length() != (vCount() - ) )
{
THROW_EXCEPTION(InvalidOperationException, "No enough edges for Kruskal operation...");
} return toArray(ret);
} SharedPointer< Array<int> > BFS(int i)
{
DynamicArray<int>* ret = NULL; if( ( <= i) && (i < vCount()) )
{
LinkQueue<int> q;
LinkQueue<int> r;
DynamicArray<bool> visited(vCount()); for(int i=; i<visited.length(); i++)
{
visited[i] = false;
} q.add(i); while( q.length() > )
{
int v = q.front(); q.remove(); if( !visited[v] )
{
SharedPointer< Array<int> > aj = getAdjacent(v); for(int j=; j<aj->length(); j++)
{
q.add((*aj)[j]);
} r.add(v); visited[v] = true;
}
} ret = toArray(r);
}
else
{
THROW_EXCEPTION(InvalidParameterException, "Index i is invalid...");
} return ret;
} SharedPointer< Array<int> > DFS(int i)
{
DynamicArray<int>* ret = NULL; if( ( <= i) && (i < vCount()) )
{
LinkStack<int> s;
LinkQueue<int> r;
DynamicArray<bool> visited(vCount()); for(int j=; j<visited.length(); j++)
{
visited[j] = false;
} s.push(i); while( s.size() > )
{
int v = s.top(); s.pop(); if( !visited[v] )
{
SharedPointer< Array<int> > aj = getAdjacent(v); for(int j=aj->length() - ; j>=; j--)
{
s.push((*aj)[j]);
} r.add(v); visited[v] = true;
}
} ret = toArray(r);
}
else
{
THROW_EXCEPTION(InvalidParameterException, "Index i is invalid...");
} return ret;
} SharedPointer<Array<int>> dijkstra(int i, int j, const E& LIMIT)
{
LinkQueue<int> ret; if( ( <= i) && (i < vCount()) && ( <= j) && (j < vCount()) )
{
DynamicArray<E> dist(vCount());
DynamicArray<int> path(vCount());
DynamicArray<bool> mark(vCount()); for(int k=; k<vCount(); k++)
{
mark[k] = false;
path[k] = -; dist[k] = isAdjacent(i, k) ? (path[k] = i, getEdge(i, k)) : LIMIT;
} mark[i] = true; for(int k=; k<vCount(); k++)
{
E m = LIMIT;
int u = -; for(int w=; w<vCount(); w++)
{
if( !mark[w] && (dist[w] < m) )
{
m = dist[w];
u = w;
}
} if( u == - )
{
break;
} mark[u] = true; for(int w=; w<vCount(); w++)
{
if( !mark[w] && isAdjacent(u, w) && (dist[u] + getEdge(u, w) < dist[w]) )
{
dist[w] = dist[u] + getEdge(u, w);
path[w] = u;
}
}
} LinkStack<int> s; s.push(j); for(int k=path[j]; k != -; k=path[k])
{
s.push(k);
} while( s.size() > )
{
ret.add(s.top()); s.pop();
}
}
else
{
THROW_EXCEPTION(InvalidParameterException, "Index<i, j> is invalid...");
} if( ret.length() < )
{
THROW_EXCEPTION(ArithmeticException, "There is no path grom i to j...");
} return toArray(ret);
}
}; } #endif // GRAPH_H

测试程序如下:

 #include <iostream>
#include "MatrixGraph.h"
#include "ListGraph.h" using namespace std;
using namespace DTLib; template< typename V, typename E >
Graph<V, E>& GraphEasy()
{
static MatrixGraph<, V, E> g; g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , ); return g;
} template< typename V, typename E >
Graph<V, E>& GraphComplex()
{
static ListGraph<V, E> g(); g.setEdge(, , );
g.setEdge(, , );
g.setEdge(, , ); g.setEdge(, , ); g.setEdge(, , ); g.setEdge(, , );
g.setEdge(, , ); return g;
} int main()
{
Graph<int, int>& g = GraphComplex<int, int>();
SharedPointer< Array<int> > p = g.dijkstra(, , ); for(int i=; i<p->length(); i++)
{
cout << (*p)[i] << " ";
} cout << endl; return ;
}

结果如下:

小结:

第七十八课 最短路径(Dijkstra)的更多相关文章

  1. 第七十九课 最短路径(Floyd)

    程序如下: #ifndef GRAPH_H #define GRAPH_H #include "Object.h" #include "SharedPointer.h&q ...

  2. NeHe OpenGL教程 第十八课:二次几何体

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  3. NeHe OpenGL教程 第四十八课:轨迹球

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  4. NeHe OpenGL教程 第三十八课:资源文件

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  5. NeHe OpenGL教程 第二十八课:贝塞尔曲面

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  6. Unity3D研究院之Jenkins的使用(七十八)

    长夜漫漫无心睡眠,来一篇嘿嘿.我相信如果已经用Shell脚本完成IOS和Android打包的朋友一定需要Jenkins 怎么才能让策划打包ipa和apk?怎么才能彻底省去程序的时间,只要在同一局域网内 ...

  7. (七十八)使用第三方框架INTULocationManager实现定位

    前面(第七十五.七十六篇)讲述了如何通过CoreLocation获取位置,授权.获取等相当复杂,如果借助于第三方框架,可以简单的实现授权与定位. 首先在GitHub中搜索LocationManager ...

  8. 深入浅出CChart 每日一课——第十八课 女神的套娃,玩转对话框

    前面笨笨已经给大家展示了CChart编程的N个例子.这些例子中,我们的CChart图像都是绘制在程序的主窗口中的. 在很多情况下,我们面对的情形不是这样的.这节课笨笨就给大家介绍一下怎样在对话框中用C ...

  9. 《手把手教你》系列基础篇(七十八)-java+ selenium自动化测试-框架设计基础-TestNG依赖测试- 中篇(详解教程)

    1.简介 上一篇讲解了依赖测试的各种方法,今天继续讲解依赖测试的方法,这一篇主要是讲解和分享通过xml文件配置组名依赖方法( 主要是测试组的用法).废话不说,直接上干货. 2.实例 测试组:一个组可包 ...

随机推荐

  1. P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)

    P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...

  2. Python Redis 发布订阅

    发布者:服务器 订阅者:Dashboad和数据处理 频道主逻辑 import redis class RedisHelper: def __init__(self): # 链接服务端 self.__c ...

  3. resmgr:cpu quantum 等待事件 top 1

    早上看昨天现场的报告,发现晚上七八点,resmgr:cpu quantum 等待事件排在i第一位,如下: 该事件是和资源管理相关的,如果启用资源管理计划,就可能遇到这个问题. 所以常规的解决方案是禁用 ...

  4. Log4j配置记录

    log4j的配置文件就是用来设置记录器的级别.存放器和布局的,它可接key=value格式的设置或xml格式的设置信息.通过配置,可以创建出Log4J的运行环境. 1.配置文件 log4j配置文件的基 ...

  5. Assembly Required【思维】

    问题 A: Assembly Required 时间限制: 1 Sec  内存限制: 128 MB 提交: 49  解决: 25 [提交] [状态] [命题人:admin] 题目描述 Princess ...

  6. LINQ之路11:LINQ Operators之过滤(Filtering)

    在本系列博客前面的篇章中,已经对LINQ的作用.C# 3.0为LINQ提供的新特性,还有几种典型的LINQ技术:LINQ to Objects.LINQ to SQL.Entity Framework ...

  7. Win10系统截屏快捷键

    截全屏 win+prt scsysrq 图片位置:C:\Users\ASUS\Pictures\Screenshots     此电脑/图片/屏幕截图 截当前活动窗口 alt+prt scsysrq ...

  8. POJ 3278 抓奶牛(BFS入门题)

    描述 农夫约翰已被告知逃亡牛的位置,并希望立即抓住她.他开始于一个点Ñ(0≤ Ñ ≤100,000)上的数线和牛是在点ķ(0≤ ķ上相同数目的线≤100,000).农夫约翰有两种交通方式:步行和传送. ...

  9. Practical Node.js (2018版) 第8章:Building Node.js REST API Servers

    Building Node.js REST API Servers with Express.js and Hapi Modern-day web developers use an architec ...

  10. git命令及远程仓库操作内容整理

    0.在git官网上下载git对应的适配系统版本 进入到需要管理的目录,打开git终端 1.git相关的基础命令: git init 在当前文件夹下创建一个.git的隐藏文件夹,初始化版本控制器 注:不 ...