[NOIP2018]保卫王国
嘟嘟嘟
由于一些知道的人所知道的,不知道的人所不知道的原因,我来发NOIP2018day2T3的题解了。
(好像我只是个搬运工……)
这题真可以叫做NOIplus了,跟其他几道比较水的题果然不一样,无论代码量还是思维难度都有一个更高的层次。
我是看了zhoutb的题解的。而且抄了他代码(还没抄对),所以这里直接推荐各位看luogu的题解吧。
关于这个倍增数组的预处理,实际上只用考虑为父亲结点的时候该怎么办(就是裸dp)。而对于\(2 ^ i (i > 0)\)的倍增部分,只用枚举u和祖先的状态转移即可。
(代码中唯一的不同就是把zhoutb的非递归改成树上递归的)
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<set>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const ll INF = 1e14;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
#define pr pair<int, int>
#define mp make_pair
int n, m, a[maxn];
set<pr> s;
struct Edge
{
int nxt, to;
}e[maxn << 1];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y)
{
e[++ecnt] = (Edge){head[x], y};
head[x] = ecnt;
}
ll f[maxn][2];
In void dfs1(int now, int _f)
{
f[now][1] = a[now];
for(int i = head[now], v; i != -1; i = e[i].nxt)
{
if((v = e[i].to) == _f) continue;
dfs1(v, now);
f[now][0] += f[v][1];
f[now][1] += min(f[v][0], f[v][1]);
}
}
int dep[maxn], fa[N + 2][maxn];
ll g[maxn][2];
In void dfs2(int now, int _f)
{
for(int i = 1; (1 << i) <= dep[now]; ++i) //不能放在dfs3处理
fa[i][now] = fa[i - 1][fa[i - 1][now]];
for(int i = head[now], v; i != -1; i = e[i].nxt)
{
if((v = e[i].to) == _f) continue;
dep[v] = dep[now] + 1;
fa[0][v] = now;
g[v][0] = g[now][1] + f[now][1] - min(f[v][0], f[v][1]);
g[v][1] = min(g[v][0], g[now][0] + f[now][0] - f[v][1]);
dfs2(v, now);
}
}
const int N = 17;
ll dp[2][2][N + 2][maxn]; //now 0/1, 2^i 0/1
In void dfs3(int now, int _f)
{
dp[0][0][0][now] = INF;
dp[1][0][0][now] = f[fa[0][now]][0] - f[now][1];
dp[0][1][0][now] = f[fa[0][now]][1] - min(f[now][0], f[now][1]);
dp[1][1][0][now] = f[fa[0][now]][1] - min(f[now][0], f[now][1]);
for(int i = 1; (1 << i) <= dep[now]; ++i)
for(int x = 0; x < 2; ++x)
for(int y = 0; y < 2; ++y)
{
dp[x][y][i][now] = INF;
for(int z = 0; z < 2; ++z)
dp[x][y][i][now] = min(dp[x][y][i][now], dp[x][z][i - 1][now] + dp[z][y][i - 1][fa[i - 1][now]]);
}
for(int i = head[now], v; i != -1; i = e[i].nxt)
if((v = e[i].to) ^ _f) dfs3(v, now);
}
In ll solve(int x, bool a, int y, bool b)
{
if(dep[x] < dep[y]) swap(x, y), swap(a, b);
ll rx[2] = {INF, INF}, ry[2] = {INF, INF};
ll nx[2], ny[2];
rx[a] = f[x][a], ry[b] = f[y][b];
for(int i = N; i >= 0; --i)
if(dep[x] - (1 << i) >= dep[y])
{
nx[0] = nx[1] = INF;
for(int j = 0; j < 2; ++j)
for(int k = 0; k < 2; ++k)
nx[j] = min(nx[j], rx[k] + dp[k][j][i][x]);
rx[0] = nx[0], rx[1] = nx[1], x = fa[i][x];
}
if(x == y) return rx[b] + g[x][b];
for(int i = N; i >= 0; --i)
if(fa[i][x] ^ fa[i][y])
{
nx[0] = nx[1] = ny[0] = ny[1] = INF;
for(int j = 0; j < 2; ++j)
for(int k = 0; k < 2; ++k)
{
nx[j] = min(nx[j], rx[k] + dp[k][j][i][x]);
ny[j] = min(ny[j], ry[k] + dp[k][j][i][y]);
}
rx[0] = nx[0], rx[1] = nx[1], x = fa[i][x];
ry[0] = ny[0], ry[1] = ny[1], y = fa[i][y];
}
int tp = fa[0][x];
ll ret0 = f[tp][0] - f[x][1] - f[y][1] + rx[1] + ry[1] + g[tp][0];
ll ret1 = f[tp][1] - min(f[x][0], f[x][1]) - min(f[y][0], f[y][1]) + min(rx[0], rx[1]) + min(ry[0], ry[1]) + g[tp][1];
return min(ret0, ret1);
}
int main()
{
Mem(head, -1);
n = read(); m = read(); char ch[2]; scanf("%s", ch);
for(int i = 1; i <= n; ++i) a[i] = read();
for(int i = 1; i < n; ++i)
{
int x = read(), y = read();
addEdge(x, y), addEdge(y, x);
if(x > y) swap(x, y);
s.insert(mp(x, y));
}
dfs1(1, 0); dfs2(1, 0); dfs3(1, 0);
for(int i = 1; i <= m; ++i)
{
int x = read(), a = read(), y = read(), b = read();
if(x > y) swap(x, y), swap(a, b);
if(!a && !b && s.find(mp(x, y)) != s.end()) puts("-1");
else write(solve(x, a, y, b)), enter;
}
return 0;
}
[NOIP2018]保卫王国的更多相关文章
- 竞赛题解 - NOIP2018 保卫王国
\(\mathcal{NOIP2018}\) 保卫王国 - 竞赛题解 按某一个炒鸡dalao名曰 taotao 的话说: \(\ \ \ \ \ \ \ \ \ "一道sb倍增题" ...
- [NOIP2018]保卫王国 题解
NOIP2018提高组D2T3 ddp虽然好想,但是码量有点大(其实是我不会),因此本文用倍增优化树形DP来解决本题. 题意分析 给一棵树染色,每个节点染色需要一定的花费,要求相邻两个节点至少要有一个 ...
- 【比赛】NOIP2018 保卫王国
DDP模板题 #include<bits/stdc++.h> #define ui unsigned int #define ll long long #define db double ...
- luogu5024 [NOIp2018]保卫王国 (动态dp)
可以直接套动态dp,但因为它询问之间相互独立,所以可以直接倍增记x转移到fa[x]的矩阵 #include<bits/stdc++.h> #define CLR(a,x) memset(a ...
- NOIP2018保卫王国
题目大意:给一颗有点权的树,每次规定两个点选还是不选,求这棵树的最小权点覆盖. 题解 ZZ码农题. 要用动态dp做,这题就是板子,然鹅并不会,留坑代填. 因为没有修改,所以可以静态倍增. 我们先做一遍 ...
- 2019.02.16 bzoj5466: [Noip2018]保卫王国(链分治+ddp)
传送门 题意简述: mmm次询问,每次规定两个点必须选或者不选,求树上的带权最小覆盖. 思路: 考虑链分治+ddpddpddp 仍然是熟悉的套路,先考虑没有修改的状态和转移: 令fi,0/1f_{i, ...
- [NOIP2018]保卫王国(树形dp+倍增)
我的倍增解法吊打动态 \(dp\) 全局平衡二叉树没学过 先讲 \(NOIP\) 范围内的倍增解法. 我们先考虑只有一个点取/不取怎么做. \(f[x][0/1]\) 表示取/不取 \(x\) 后,\ ...
- 「NOIP2018 保卫王国」
题目 强制选点我们可以把那个点权搞成\(-inf\),强制不选我们搞成\(inf\),之后就真的成为动态\(dp\)的板子题了 由于不想像板子那样再写一个最大独立集的方程,之后利用最小点覆盖=总点权- ...
- BZOJ5466 NOIP2018保卫王国(倍增+树形dp)
暴力dp非常显然,设f[i][0/1]表示i号点不选/选时i子树内的答案,则f[i][0]=Σf[son][1],f[i][1]=a[i]+Σmin(f[son][0],f[son][1]). 注意到 ...
随机推荐
- Python爬虫之网页图片抓取
一.引入 这段时间一直在学习Python的东西,以前就听说Python爬虫多厉害,正好现在学到这里,跟着小甲鱼的Python视频写了一个爬虫程序,能实现简单的网页图片下载. 二.代码 __author ...
- sort、sorted高级排序-Python3.7 And 算法<七>
1.sort(*, key=None, reverse=False) sort()接受两个参数,这两个参数只能通过关键字(关键字参数)传递. 参数key:带一个参数的函数(排序时,会依次传入列表的每一 ...
- org.apache.catalina.LifecycleException错误解决方案
1.org.apache.catalina.LifecycleException错误 一般是由于在tomcat中运行web应用时为所在的jvm分配的堆空间过小,具体错误截图如下所示: 2.为特定程序分 ...
- Perfect hashing (And Minimal perfect hashing)
Perfect Hashing: A hash function that is injective-that is, maps each valid input to a different has ...
- Python shelve
shelve模块只有一个open函数,返回类似字典的对象,可读可写; key必须为字符串,而值可以是python所支持的数据类型. import shelve f = shelve.open('SHE ...
- css清除默认样式
CSS 清除默认样式 通常有以下几句就够了: *{margin:0;padding:0} li{list-style:none} img{vertical-align:top;border:non ...
- tfs 禁止多人签出
好久没用tfs了,忘了怎么设置了,记录下 编辑----->高级
- Linux LB--负载均衡和高可靠
1.负载均衡典型应用场景,外网.内网.私网公共服务. 典型场景: (1)用户通过公网访问数据中心的ftp.web.https服务器. (2) 在数据中心内部东西向访问其他服务时,例如,访问其他虚拟机. ...
- recovery 差分升级包制作超时
我们在对android系统升级的时候,可以减少升级包的大小,只升级差异部分,也就是差分包升级,相关的描述可以参考:http://blog.csdn.net/csdn66_2016/article/de ...
- screen mac linux下一种让程序后台运行的方法
1: screen 场景的意思.字面意思就是软件运行在不同场景 (1)创建会话 使用命令“screen -S RunWork”来创建一个screen会话,命令执行之后,就会得到一个新的shell窗口, ...