题目大意:给定一个 N 个点,N 条边的无向图,现给每条边定向,求有多少种定向方式使得定向后的有向图中无环。

题解:显然,这是一个外向树森林,定向后存在环的情况只能发生在基环树中环的位置,环分成顺时针和逆时针两种情况,其他边方向随意。因此,记外向树森林中环的大小为 \(w[i]\),则答案为$$2^{n-\sum w[i]}*\prod (2^{w[i]}-2)$$

代码如下

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=2e5+10;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} vector<P> G[maxn];int tot=1;
int n,m,dep[maxn],vis[maxn];
ll ans=1,p[maxn]; void read_and_parse(){
n=m=read(),p[0]=1;
for(int i=1;i<=n;i++)p[i]=p[i-1]*2%mod;
for(int i=1,to;i<=n;i++)to=read(),G[i].pb(mp(to,++tot)),G[to].pb(mp(i,++tot));
} void dfs(int u,int fe){
vis[u]=1;
for(int i=0;i<G[u].size();i++){
int v=G[u][i].first,e=G[u][i].second;if(fe==(e^1))continue;
if(!vis[v])dep[v]=dep[u]+1,dfs(v,e);
else if(vis[v]==1)m-=dep[u]-dep[v]+1,ans=ans*(p[dep[u]-dep[v]+1]-2)%mod;
}
vis[u]=2;
} void solve(){
for(int i=1;i<=n;i++)if(!vis[i])dfs(i,0);
ans=ans*p[m]%mod;
printf("%lld\n",ans);
} int main(){
read_and_parse();
solve();
return 0;
}

【CF711D】Directed Roads的更多相关文章

  1. 【CF711D】Directed Roads(环,强连通分量)

    题意: 给一张N个点N条有向边的图,边可以逆向.问任意逆向若干条边使得这张图无环的方案数(mod 1e9+7). n<=200000 思路:三个样例给的好 找规律方便很多 易得有N点的环有(2^ ...

  2. 【题解】Paid Roads [SP3953] [Poj3411]

    [题解]Paid Roads [SP3953] [Poj3411] 传送门:\(\text{Paid}\) \(\text{Roads}\) \(\text{[SP3953]}\) \(\text{[ ...

  3. 【网络流】One-Way Roads

    [网络流]One-Way Roads 题目描述 In the country of Via, the cities are connected by roads that can be used in ...

  4. 【34.40%】【codeforces 711D】Directed Roads

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  5. 【lightoj-1002】Country Roads(dijkstra变形)

    light1002:传送门 [题目大意] n个点m条边,给一个源点,找出源点到其他点的‘最短路’ 定义:找出每条通路中最大的cost,这些最大的cost中找出一个最小的即为‘最短路’,dijkstra ...

  6. 【HDU1301】Jungle Roads(MST基础题)

    爽爆.史上个人最快MST的记录7分40s..一次A. #include <iostream> #include <cstring> #include <cstdlib&g ...

  7. 【HDU1102】Constructing Roads(MST基础题)

    最小生成树水题.prim一次AC #include <iostream> #include <cstring> #include <cstdlib> #includ ...

  8. 【USACO02FEB】Rebuilding Roads 重建道路 题解(树形DP)

    题目链接 题目大意:问使含有$p$个节点的子树分离至少需要去掉几条边. ------------------ 设$f[i][j]$表示以$i$为根的子树保留$j$个节点所去掉的最少边数. 初始化$f[ ...

  9. 【图论】USACO11JAN Roads and Planes G

    题目内容 洛谷链接 Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到\(T\)个城镇 (\(1 <= T <= 25,000\)),编号为\(1\)到\ ...

随机推荐

  1. Ext JS 4 的类系统

    前言 我们知道,JavaScript中没有真正的类,它是一种面向原型的语言 .这种语言一个强大的特性就是灵活,实现一个功能可以有很多不同的方式,用不同的编码风格和技巧.但随之也带来了代码的不可预测和难 ...

  2. HTML 5 拖放

    拖放(Drag 和 drop)是 HTML5 标准的组成部分. 拖放 拖放是一种常见的特性,即抓取对象以后拖到另一个位置. 在 HTML5 中,拖放是标准的一部分,任何元素都能够拖放. 拖放事件 1. ...

  3. 12.15 Daily Scrum

      Today's Task Tomorrow's Task 丁辛 实现和菜谱相关的餐厅列表. 实现和菜谱相关的餐厅列表.             邓亚梅             美化搜索框UI. 美 ...

  4. 个人博客作业Week2(代码规范,代码复审)

    Q:是否需要有代码规范 首先我们来搞清楚什么是“代码规范”,它和“代码风格”又有什么关系.依据个人的审美角度,我可能更喜欢在函数与函数之间空出一行,可能在命名习惯和代码注释上更加的internatio ...

  5. 《linux内核设计与实现》第五章

    第五章 系统调用 一.与内核通信 系统调用在用户空间进程和硬件设备之间添加了一个中间层.作用: 为用户空间提供了一种硬件的抽象接口. 系统调用保证了系统的稳定和安全. 每个进程都运行在虚拟系统中,而在 ...

  6. Linux 第八周实验 进程的切换和系统的一般执行过程

    姬梦馨 原创作品 <Linux内核分析>MOOC课程:http://mooc.study.163.com/course/USTC-1000029000 第八讲 进程的切换和系统的一般执行过 ...

  7. 读书笔记(chapter7)

    第七章 链接 链接是将各种代码和数据部分收集起来并且组合成为一个单一文件的过程.1.这个文件可被加载到存储器并执行:2.也可以执行于加载时,也就是在程序被加载器加载到存储器并执行:3.甚至可以执行于运 ...

  8. 面向对象课程 - T-shirt

    拿到了一件谜一样的T-shirt 吓得我赶紧捏了下hbb

  9. php配置虚拟主机

    在httpd.conf的目录下,新建一个配置文件virtualhost-host.conf,添加虚拟主机配置 <VirtualHost *:80> DocumentRoot "E ...

  10. HDU 2043 密码

    http://acm.hdu.edu.cn/showproblem.php?pid=2043 Problem Description 网上流传一句话:"常在网上飘啊,哪能不挨刀啊-" ...