NumPy 基础用法
NumPy 是高性能科学计算和数据分析的基础包. 它是 pandas 等其他各种工具的基础.
主要功能:
- ndarray 一个多维数组结构, 高效且节省空间
- 无需循环对整组数据进行快速运算的数学函数
- 线性代数, 随机数生成和傅里叶变换功能
ndarry 多维数组
- 创建ndarry:
np.array(array_like)
- 数组与列表的区别:
- 数组对象类元素类型必须相同
- 数组大小不可修改
ndarry 常用属性
- T: 数组的转置
- size: 数组元素个数
- ndim: 数组的维数
- shape: 数组的维度大小(元组形式)
- dtype: 数组元素的数据类型
ndarry 创建方法
- array() 将列表转为数组, 可选择显式指定 dtype
- arange() range 的 numpy 版支持浮点数
- linspace() 类似 arange(), 第三个参数为数组长度
- zero() 根据指定形状和 dtype 创建全0数组
- ones() 根据指定形状和 dtype 创建全1数组
- empty() 根据指定形状和 dtype 创建空数组(内存随机值)
- eye() 根据指定边长和 dtype 创建单位矩阵
ndarray 索引
- 一维数组索引
a[5]
- 多维数组索引
a[2][3]
新式写法
a[2, 3]
(推荐)- 对于一个数组, 选出其第1, 3, 4, 6, 7个元素, 组成新的二维数组:
a[[1,3,4,6,7]]
- 布尔型索引, 选出所有大于5的偶数:
a[(a>5) & (a%2=0)]
- 布尔型索引, 选出所有大于5的数和偶数:
a[(a>5) | (a%2=0)]
对于一个二维数组, 选出其第一列和第三列, 组成新的二维数组:
a[:, [1, 3]]
ndarry 切片
- 一维数组的切片: 与列表类似
- 多维数组的切片: a[1:2, 3:4] a[:, 3:5] a[:, 1] (前行后列)
- 与列表切片的不同: 数组切片时并不会自动复制(而是创建一个视图), 在切片数组上的修改会影响原数组
- copy() 方法可以创建数组的深拷贝
NumPy 通用函数
浮点数特殊值
- nan(Not 啊Number) 不等于任何浮点数(nan != nan)
- inf(infinty) 比任何浮点数都大
- NumPy中创建特殊值 np.nan np.inf
- 在数据分析中, nan常被用做数据缺失值
一元函数
abs sqrt exp log ceil(向上取整) floor(向下取整) rint trunc modf isnan isinf cos sin tan
二元函数
add substract multiply divide power mod maximum mininum
数学和统计方法
- sum 求和
- mean 求平均数
- std 求标准差
- var 求方差
- min 求最小值
- max 求方差
- argmin 求最小值索引
- argmax 求最大值索引
随机数生成
- rand 给定形状产生随机数组(0到1之间的数)
- randin 给定形状产生随机整数
- choice 给定形状产随机选择
- shuffle 与random.shuffle相同
- uniform 给定形状产生随机数组
NumPy 基础用法的更多相关文章
- numpy基础用法学习
numpy get started 导入numpy库,并查看numpy版本 import numpy as np np.__version__ '1.14.0' 一.创建ndarray 1. 使用np ...
- Python Numpy shape 基础用法(转自他人的博客,如涉及到侵权,请联系我)
Python Numpy shape 基础用法 shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入 ...
- 《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说, ...
- 小白眼中的AI之~Numpy基础
周末码一文,明天见矩阵- 其实Numpy之类的单讲特别没意思,但不稍微说下后面说实际应用又不行,所以大家就练练手吧 代码裤子: https://github.com/lotapp/BaseCode ...
- python数据分析---第04章 NumPy基础:数组和矢量计算
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...
- [转]python与numpy基础
来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb ...
- 数据分析-numpy的用法
一.jupyter notebook 两种安装和启动的方式: 第一种方式: 命令行安装:pip install jupyter 启动:cmd 中输入 jupyter notebook 缺点:必须手动去 ...
- 利用python进行数据分析--numpy基础
随书练习,第四章 NumPy基础:数组和矢量运算 # coding: utf-8 # In[1]: # 加注释的三个方法1.用一对"""括起来要注释的代码块. # 2. ...
- python数据分析 Numpy基础 数组和矢量计算
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...
随机推荐
- C#中get和set
释一: 属性的访问器包含与获取(读取或计算)或设置(写)属性有关的可执行语句.访问器声明可以包含 get 访问器或 set 访问器,或者两者均包含.声明采用下列形式之一: get {} set {} ...
- 点击倒计时60S获取验证码
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script sr ...
- 使用python内置库pytesseract实现图片验证码的识别
环境准备: 1.安装Tesseract模块 git文档地址:https://digi.bib.uni-mannheim.de/tesseract/ 下载后就是一个exe安装包,直接右击安装即可,安装完 ...
- zookeeper及kafka集群搭建
zookeeper及kafka集群搭建 1.有关zookeeper的介绍可参考:http://www.cnblogs.com/wuxl360/p/5817471.html 2.zookeeper安装 ...
- guxh的python笔记十:包和模块
1,包和模块 包package:本质就是一个文件夹/目录,必须带一个__init.__.py的文件 模块module:.py结尾的python文件 2,导入方法 import pandas, coll ...
- android Studio 出现:Unable to resolve dependency for ':app@debug/compileClasspath'
li经千辛万苦,我的新工程gradle搞定了 但是却在变异的时候告诉我 Unable to resolve dependency for ':app@debug/compileClasspath'xx ...
- CSS选择器 nth-child 和 nth-of-type
Css 3 中两个新的选择器 nth-child 和 nth-of-type 都可以选择父元素下对应的子元素,但它们到底有什么区别呢? :nth-child(n) 选择器匹配属于其父元素下的第n个子元 ...
- Linq(一)
概述 LINQ是.NET框架的扩展,它允许我们以使用SQL查询数据库的方式来查询数据集合. 使用LINQ,你可以从数据库.程序对象集合以及XML文档中查询数据. 需要注意的是,对于比较简单的功能,与其 ...
- python----常用模块(random,string,time&datetime,os,sys,xpinyin(拼音))
一.模块.包 1.1 什么是模块 在python中,一个.py文件就构成一个模块,意思就是说把python代码写到里面,文件名就是模块的名称,test.py test就是模块名称. 1.2 什么是包 ...
- Linux进程间通信机制
Linux支持管道.信号.unix system V三种IPC(Inter-Process-Communication)机制.以下分别对三种机制加以简单介绍. 一.信号机制: 信号又称作软中断,用来通 ...