题目链接:Easy Math

题目大意:给定\(n(1\leqslant n\leqslant 10^{12}),m(1\leqslant m\leqslant 2*10^{9})\),求\(\sum_{i=1}^{m}\mu (i\cdot n)\)。

题解:废话少说,直接上公式

$$\mu(i\cdot n)=\left\{\begin{matrix}
\mu(i)\cdot\mu(n) & gcd(i,n)==1\\
0 & other
\end{matrix}\right.$$

$$F(n,m)=\sum_{i=1}^{m}\mu(i\cdot n)$$

则有$$F(n,m)=\mu(n)\cdot\sum_{i=1}^{m}\mu (i)\cdot[gcd(i,n)==1]$$

由$$[n==1]=\sum_{d|n}^{ } \mu(d)$$

$$F(n,m)=\mu(n)\cdot\sum_{i=1}^{m}\mu (i)\sum_{d|gcd(i,n)}^{ }\mu(d)$$

$$F(n,m)=\mu(n)\cdot\sum_{d|n}^{d\leqslant m}\mu(d)\cdot\sum_{i=1}^{\left \lfloor \frac{m}{d} \right \rfloor}\mu(i\cdot d)$$

$$F(n,m)=\mu(n)\cdot\sum_{d|n}^{d\leqslant m}\mu(d)\cdot F(d,\left \lfloor \frac{m}{d} \right \rfloor)$$

推出式子后,递归求解即可,当n==1时,有\(F(n,m)=M(m)=\sum_{i=1}^{m}\mu(i)\),关于这个式子有一个莫比乌斯反演的经典公式,就是$$M(n)=1-\sum_{i=2}^{n}M(\left \lfloor \frac{n}{i} \right \rfloor)$$预处理出莫比乌斯函数及其前缀和的值后即可,求M(n)的时候记得要分块做

#include<bits/stdc++.h>
using namespace std;
#define N 10000001
#define LL long long
LL n,m,cnt,p[N],f[N],s[N];
map<LL,LL>M;
bool x[N];
void pretype()
{
f[]=;
for(int i=;i<N;i++)
{
if(!x[i])p[++cnt]=i,f[i]=-;
for(int j=;j<=cnt && i*p[j]<N;j++)
{
f[i*p[j]]=-f[i];
x[i*p[j]]=true;
if(i%p[j]==){f[i*p[j]]=;break;}
}
}
for(int i=;i<N;i++)
s[i]=s[i-]+f[i];
}
LL get(LL n)
{
if(n<N)return f[n];
LL k=;
for(LL i=;i*i<=n;i++)
if(n%i==)
{
if(n%(i*i)==)return ;
k*=-,n/=i;
}
if(n>)k*=-;return k;
}
LL get_M(LL n)
{
if(n<N)return s[n];
if(M[n])return M[n];
LL res=,nxt;
for(LL i=;i<=n;i=nxt+)
{
nxt=min(n,n/(n/i));
res-=(nxt-i+)*get_M(n/i);
}
return M[n]=res;
}
LL F(LL n,LL m)
{
if(n==)return get_M(m);
LL miu=get(n),res=;
if(miu==)return ;
for(LL d=;d*d<=n && d<=m;d++)if(n%d==)
{
res+=get(d)*F(d,m/d);
if(n/d<=m)res+=get(n/d)*F(n/d,m/(n/d));
}
return miu*res;
}
int main()
{
pretype();
scanf("%lld%lld",&m,&n);
printf("%lld\n",F(n,m));
}

[ACM-ICPC 2018 徐州赛区网络预赛][D. Easy Math]的更多相关文章

  1. 徐州赛区网络预赛 D Easy Math

    比赛快结束的适合看了一下D题,发现跟前几天刚刚做过的HDU 5728 PowMod几乎一模一样,当时特兴奋,结果一直到比赛结束都一直WA.回来仔细一琢磨才发现,PowMod这道题保证了n不含平方因子, ...

  2. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  3. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)

    ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...

  4. 计蒜客 1460.Ryuji doesn't want to study-树状数组 or 线段树 (ACM-ICPC 2018 徐州赛区网络预赛 H)

    H.Ryuji doesn't want to study 27.34% 1000ms 262144K   Ryuji is not a good student, and he doesn't wa ...

  5. ACM-ICPC 2018 徐州赛区网络预赛 B(dp || 博弈(未完成)

    传送门 题面: In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl n ...

  6. ACM-ICPC 2018 徐州赛区网络预赛 B. BE, GE or NE

    In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl named &qu ...

  7. ACM-ICPC 2018 徐州赛区网络预赛 H. Ryuji doesn't want to study

    262144K   Ryuji is not a good student, and he doesn't want to study. But there are n books he should ...

  8. ACM-ICPC 2018 徐州赛区网络预赛 F. Features Track

    262144K   Morgana is learning computer vision, and he likes cats, too. One day he wants to find the ...

  9. ACM-ICPC 2018 徐州赛区网络预赛 I. Characters with Hash

    Mur loves hash algorithm, and he sometimes encrypt another one's name, and call him with that encryp ...

随机推荐

  1. 上海线下技术交流(AA制)

    标签: 上海线下技术交流会 作者:王清培(Plen wang) 沪江Java资深架构师 .营销云平台负责人 上海地区技术线下交流,本次聚会AA制,要的就是热爱技术,交流技术,不是凑热闹.特此留念. 活 ...

  2. hadoop ha 读取 activce状态的活动节点

    方式一 package com.xxx.hadoop; import com.sun.demo.jvmti.hprof.Tracker; import com.sun.xml.bind.util.Wh ...

  3. Catch a Memory Access Violation in C++

    From:  https://stackoverflow.com/questions/16612444/catch-a-memory-access-violation-in-c In C++, is ...

  4. 卷积神经网络(CNN)代码实现(MNIST)解析

    在http://blog.csdn.net/fengbingchun/article/details/50814710中给出了CNN的简单实现,这里对每一步的实现作个说明: 共7层:依次为输入层.C1 ...

  5. centos7.2重新安装yum

    [root@zf-test-web01-4 ~]# yum install rng-toolsLoaded plugins: fastestmirrorLoading mirror speeds fr ...

  6. mysql字符串用法

    replace(str,from_str,to_str) --用字符串to_str替换字符串str中的子串from_str并返回 --mysql> select replace('www.mys ...

  7. 【PHP】PHP的安装和配置

    PHP(外文名:PHP: Hypertext Preprocessor,中文名:“超文本预处理器”)是一种通用开源脚本语言.语法吸收了C语言.Java和Perl的特点,利于学习,使用广泛,主要适用于W ...

  8. IDEA使用笔记(九)——设置文件注释

    方式一:后写文件描述信息 1:设置——如下图所示 2:验证——创建个类试试 3:验证——结果如下 4:其他,所有注释模版中包含 #parse("File Header.java") ...

  9. k8s 组件介绍__单Master集群部署

    参考链接:https://github.com/opsnull/follow-me-install-kubernetes-cluster kubernetes 概述 1.kubernetes 是什么 ...

  10. Nuxt.js部署应用的方式

    Nuxt.js 提供了两种发布部署应用的方式:服务端渲染应用部署 和 静态应用部署. 静态应用部署就不说了,主要说说服务端渲染应用部署. 官方部署方式 关于服务端渲染应用部署,官方文档是这么写的: 部 ...