最短路径问题

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8219    Accepted Submission(s): 2456

[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3790

【解题思路】Dijk + heap【单元最短路】既然有两考虑的因素,而且分优先,那么优先队列排列比较的时候就先考虑路径长度,在路径长度相等的前提下在考虑花费的大小,即路径小花费少的先出,在细节进队的时候也是这样考虑,过一遍Dijk最后输出需要的值

【PS】刚学最短路,一开始没考虑清楚,不知该如何下手,但知道问题出在对Dij算法的掌握程度上,如果像之前的刚学的最短路情形(只有一个考虑的元素),估计也会敲出来,后来自己实现了这题的代码时,发现思路也是一样的,单个因素的最短路中, 进队的时候判断能否进队用的是小于关系运算符,如果也存在多条最短路的时候,因为小于关系运算的缘故,这时起始点到这个点的相同长度的最短路径不会进队列(因为已有进入队列的相同长度的路径),但如果还有考虑的因素时,这是就不一样了,像这题,在路径长度的判断上就要改用小于等于关系运算符,因为在路径长度相等的时候,其还有次要考虑因素,这时,次要考虑因素的比较上就需要用到小于关系运算符。

一开始考虑错误的方向是将从源点到终点整条最短路径与其最小花费进行权衡,没有考虑到:在优先队列中,一出队列,如果之前没有被访问,那么就意味着锁定了这个点的最短路径和最小花费,再次困扰的是此时的点是如何如何影响到后续点的路径和花费,所以不敢确定了是否该这样进行。最后想到:假设其(当前出队列的点)只有一条最短路径,那么就可以放心的往下进行,因为这种情况回到了单个考虑因素的情况嘛,如果有多条最短路径呢?那么其肯定都在队列当中,你现在就要做的就是在其中找到一条最优的(根据次要因素判断)出队列才行,根据自己的理解,感觉还是不太够成熟 ^_^

一直不敢对Dij等各种算法用得理直气壮,该学的是思想,这是最重要的,别拿着别人的算法用得好像是自家的似的。

 #include <cstdio>
#include <queue>
#include <cstring> using namespace std; const int NV = ;
const int NE = ;
const int INF = <<;
int ne, nv, term, tern, tot;
bool vis[NV];
int dist[NV];
int purse[NV];
struct Edge{
int v, cost, money, next;
Edge(){}
Edge(int a, int c, int m){v = a, cost = c, money = m;}
Edge(int a, int c, int m, int d){v = a, cost = c, money = m, next = d;}
bool operator < (const Edge& x) const
{
if(cost != x.cost) return cost > x.cost;
else return money > x.money;
}
}edge[NE];
int eh[NV]; void Dij(int s)
{
for(int i = ; i <= nv; ++i) purse[i] = dist[i] = i == s ? : INF;
priority_queue<Edge> que;
que.push(Edge(s, , ));
while(!que.empty())
{
Edge tmp = que.top();
int u = tmp.v;
que.pop();
if(vis[u]) continue;
vis[u] = true;
for(int i = eh[u]; i != -; i = edge[i].next)
{
int v = edge[i].v;
if(!vis[v] && dist[v] >= edge[i].cost + dist[u])
{
if(dist[v] > edge[i].cost + dist[u] ||
(dist[v] == edge[i].cost + dist[u] && purse[v] > edge[i].money + purse[u]))
{
dist[v] = edge[i].cost + dist[u];
purse[v] = edge[i].money + purse[u];
que.push(Edge(v, dist[v], purse[v]));
} }
}
}
return;
} void addedge(int u, int v, int cost, int money)
{
Edge e = Edge(v, cost, money, eh[u]);
edge[tot] = e;
eh[u] = tot++;
return;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif
while(scanf("%d%d", &nv, &ne) != EOF && nv+ne)
{
memset(eh, -, sizeof(eh));
memset(vis, false, sizeof(vis));
term = tern = tot = ;
int u, v, cost, money;
for(int i = ; i < ne; ++i)
{
scanf("%d%d%d%d", &u, &v, &cost, &money);
addedge(u, v, cost, money);
addedge(v, u, cost, money);
}
int s, t;
scanf("%d%d", &s, &t);
Dij(s);
printf("%d %d\n", dist[t], purse[t]);
}
return ;
}

HDU ACM 3790 最短路径问题的更多相关文章

  1. ACM: HDU 3790 最短路径问题-Dijkstra算法

    HDU 3790 最短路径问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Des ...

  2. HDU - 3790 最短路径问题 (dijkstra算法)

    HDU - 3790 最短路径问题 Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费 ...

  3. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  4. HDU 3790最短路径问题 [最短路最小花费]

    题目链接:[http://acm.hdu.edu.cn/showproblem.php?pid=3790] 最短路径问题 Time Limit: 2000/1000 MS (Java/Others)  ...

  5. hdu 3790 最短路径问题(双重权值,dijkstra算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 题目大意:题意明了,输出最短路径及其花费. 需要注意的几点:(1)当最短路径相同时,输出最小花费 ...

  6. hdu 3790 最短路径问题(两个限制条件的最短路)

    http://acm.hdu.edu.cn/showproblem.php?pid=3790 有两个条件:距离和花费.首先要求距离最短,距离相等的条件下花费最小. dijkstra,仅仅是在推断条件时 ...

  7. HDU 3790 最短路径问题 (最短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 简单的最短路问题,这题听说有重边.我用spfa和dijkstra写了一遍,没判重边,速度都差不多 ...

  8. #HDU 3790 最短路径问题 【Dijkstra入门题】

    题目: 最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  9. 题解报告:hdu 3790 最短路径问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起 ...

随机推荐

  1. [Umbraco] umbraco中如何分页

    分页功能应该说是web开发中最基本的功能了,常规的做法是通过查询sql语句进行分页数据显示.但在umbraco中却不是这样子的.而且通过xpath中的postion来定位.如下代码 <?xml ...

  2. Windows下为 Eclipse 配置 C/C++ 编译环境(转)

    1.Eclipse及CDT的安装 CDT的全称是C/C++ DevelopmentTools,CDT使得Eclipse能够支持C/C++的开发.直接下载 eclipse CDT 集成版 下载地址:ht ...

  3. (转)websphere线程池 连接池设置

    原文:http://www.talkwithtrend.com/Article/207511 池(Pool)是WebSphere中最常涉及的概念之一.从网络.Web 服务器.Web 容器.EJB 容器 ...

  4. linux下配置nginx负载均衡例子

    准备2台虚拟机: 分别在两个虚拟机上安装tomcat,并在服务器A安装nginx,其中nginx端口设置为了 70. 服务器A的tomcat安装目录: 服务器B的tomcat安装目录: 服务器A的ng ...

  5. CentOS 7 个性化配置指南

    博客原文地址:CentOS 7 个性化配置指南 - Wind Spirit 0x00 前言 该教程主要安装了如下软件包 iptables MySQL PHP PHP 相关模块 Nginx 主要配置实现 ...

  6. 从零开始学 Web 之 HTML(一)认识前端

    大家好,这里是 Daotin 从零开始学 Web 系列教程.此文首发于「 Daotin的梦呓 」,欢迎大家订阅关注.在这里我会从 Web 前端零基础开始,一步步学习 Web 相关的知识点,期间也会分享 ...

  7. LearnOpenGL学习笔记(四)——着色器类编写

    之前我们将着色器的代码用glsl写好之后,保存为字符串指针,然后用一个函数去编译它,这是一种手段,对于简单的着色器代码可以这样.但当我们针对复杂的着色器,我们发现编写.编译.管理着色器是一件麻烦事.我 ...

  8. C++ 单例模式实现

    #include <iostream> #include <mutex> std::mutex mtx; class Singleton { private: Singleto ...

  9. filter listener interceptor的区别

    转自: http://www.cnblogs.com/shangxiaofei/p/5328377.html https://www.cnblogs.com/jinb/p/6915351.html 一 ...

  10. PowerDesigner版本控制器设置权限

    PowerDesigner版本控制权限之前一直在Groups里面设置,一直没有效果,原因终于找出来了,PowerDesigner是要对每个库单独赋权限的,步骤如下: 连接上版本控制,在左侧菜单 Obj ...