最短路径问题

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8219    Accepted Submission(s): 2456

[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3790

【解题思路】Dijk + heap【单元最短路】既然有两考虑的因素,而且分优先,那么优先队列排列比较的时候就先考虑路径长度,在路径长度相等的前提下在考虑花费的大小,即路径小花费少的先出,在细节进队的时候也是这样考虑,过一遍Dijk最后输出需要的值

【PS】刚学最短路,一开始没考虑清楚,不知该如何下手,但知道问题出在对Dij算法的掌握程度上,如果像之前的刚学的最短路情形(只有一个考虑的元素),估计也会敲出来,后来自己实现了这题的代码时,发现思路也是一样的,单个因素的最短路中, 进队的时候判断能否进队用的是小于关系运算符,如果也存在多条最短路的时候,因为小于关系运算的缘故,这时起始点到这个点的相同长度的最短路径不会进队列(因为已有进入队列的相同长度的路径),但如果还有考虑的因素时,这是就不一样了,像这题,在路径长度的判断上就要改用小于等于关系运算符,因为在路径长度相等的时候,其还有次要考虑因素,这时,次要考虑因素的比较上就需要用到小于关系运算符。

一开始考虑错误的方向是将从源点到终点整条最短路径与其最小花费进行权衡,没有考虑到:在优先队列中,一出队列,如果之前没有被访问,那么就意味着锁定了这个点的最短路径和最小花费,再次困扰的是此时的点是如何如何影响到后续点的路径和花费,所以不敢确定了是否该这样进行。最后想到:假设其(当前出队列的点)只有一条最短路径,那么就可以放心的往下进行,因为这种情况回到了单个考虑因素的情况嘛,如果有多条最短路径呢?那么其肯定都在队列当中,你现在就要做的就是在其中找到一条最优的(根据次要因素判断)出队列才行,根据自己的理解,感觉还是不太够成熟 ^_^

一直不敢对Dij等各种算法用得理直气壮,该学的是思想,这是最重要的,别拿着别人的算法用得好像是自家的似的。

 #include <cstdio>
#include <queue>
#include <cstring> using namespace std; const int NV = ;
const int NE = ;
const int INF = <<;
int ne, nv, term, tern, tot;
bool vis[NV];
int dist[NV];
int purse[NV];
struct Edge{
int v, cost, money, next;
Edge(){}
Edge(int a, int c, int m){v = a, cost = c, money = m;}
Edge(int a, int c, int m, int d){v = a, cost = c, money = m, next = d;}
bool operator < (const Edge& x) const
{
if(cost != x.cost) return cost > x.cost;
else return money > x.money;
}
}edge[NE];
int eh[NV]; void Dij(int s)
{
for(int i = ; i <= nv; ++i) purse[i] = dist[i] = i == s ? : INF;
priority_queue<Edge> que;
que.push(Edge(s, , ));
while(!que.empty())
{
Edge tmp = que.top();
int u = tmp.v;
que.pop();
if(vis[u]) continue;
vis[u] = true;
for(int i = eh[u]; i != -; i = edge[i].next)
{
int v = edge[i].v;
if(!vis[v] && dist[v] >= edge[i].cost + dist[u])
{
if(dist[v] > edge[i].cost + dist[u] ||
(dist[v] == edge[i].cost + dist[u] && purse[v] > edge[i].money + purse[u]))
{
dist[v] = edge[i].cost + dist[u];
purse[v] = edge[i].money + purse[u];
que.push(Edge(v, dist[v], purse[v]));
} }
}
}
return;
} void addedge(int u, int v, int cost, int money)
{
Edge e = Edge(v, cost, money, eh[u]);
edge[tot] = e;
eh[u] = tot++;
return;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif
while(scanf("%d%d", &nv, &ne) != EOF && nv+ne)
{
memset(eh, -, sizeof(eh));
memset(vis, false, sizeof(vis));
term = tern = tot = ;
int u, v, cost, money;
for(int i = ; i < ne; ++i)
{
scanf("%d%d%d%d", &u, &v, &cost, &money);
addedge(u, v, cost, money);
addedge(v, u, cost, money);
}
int s, t;
scanf("%d%d", &s, &t);
Dij(s);
printf("%d %d\n", dist[t], purse[t]);
}
return ;
}

HDU ACM 3790 最短路径问题的更多相关文章

  1. ACM: HDU 3790 最短路径问题-Dijkstra算法

    HDU 3790 最短路径问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Des ...

  2. HDU - 3790 最短路径问题 (dijkstra算法)

    HDU - 3790 最短路径问题 Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费 ...

  3. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  4. HDU 3790最短路径问题 [最短路最小花费]

    题目链接:[http://acm.hdu.edu.cn/showproblem.php?pid=3790] 最短路径问题 Time Limit: 2000/1000 MS (Java/Others)  ...

  5. hdu 3790 最短路径问题(双重权值,dijkstra算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 题目大意:题意明了,输出最短路径及其花费. 需要注意的几点:(1)当最短路径相同时,输出最小花费 ...

  6. hdu 3790 最短路径问题(两个限制条件的最短路)

    http://acm.hdu.edu.cn/showproblem.php?pid=3790 有两个条件:距离和花费.首先要求距离最短,距离相等的条件下花费最小. dijkstra,仅仅是在推断条件时 ...

  7. HDU 3790 最短路径问题 (最短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 简单的最短路问题,这题听说有重边.我用spfa和dijkstra写了一遍,没判重边,速度都差不多 ...

  8. #HDU 3790 最短路径问题 【Dijkstra入门题】

    题目: 最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  9. 题解报告:hdu 3790 最短路径问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起 ...

随机推荐

  1. 从零开始学 Web 之 BOM(三)offset,scroll,变速动画函数

    大家好,这里是「 从零开始学 Web 系列教程 」,并在下列地址同步更新...... github:https://github.com/Daotin/Web 微信公众号:Web前端之巅 博客园:ht ...

  2. Hadoop项目开发笔录

    1.概要 我打算分享一下,我开发Hadoop的一些心得,对于即将步入Hadoop行业的童鞋,希望我整理的这些博文对您有帮助,我打算分为以下几部分来描述. 2.步骤 注:点击链接可直接跳到指定位置 Ha ...

  3. mysql遇见contains nonaggregated column 'information_schema.PROFILING.SEQ'异常

    报错如下:[Err] 1055 - Expression #1 of ORDER BY clause is not in GROUP BY clause and contains nonaggrega ...

  4. 读vue-0.6-utils.js源码

    typeOf typeOf: function (obj) { return toString.call(obj).slice(8, -1) } 每个对象都有一个 toString() 方法,当对象被 ...

  5. Python和Java编程题(五)

    题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5. 程序分析:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成: (1)如果这个质数恰等于n,则说明分解质因数的 ...

  6. kubernetes系列(一)安装和配置

    谈到kubernetes(或者说k8s)不得不提到云计算.虚拟化以及容器技术,相关介绍网上一大堆,不再赘述.而kubernetes的出现就是为了高效的管理云端运行的docker容器. 环境 docke ...

  7. .12-浅析webpack源码之NodeWatchFileSystem模块总览

    剩下一个watch模块,这个模块比较深,先大概过一下整体涉及内容再分部讲解. 流程图如下: NodeWatchFileSystem const Watchpack = require("wa ...

  8. Qt使用正则表达式去掉小数位多余的0

    QRegExp rx; rx.setPattern("(\\.){0,1}0+$"); double double01 = 15648.120000; double double0 ...

  9. 图片上传预览js

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. 【手记】.net正则行尾匹配符$的问题

    本来想用正则Split一下sql语句中简单场景的的GO,于是用^GO$(配合忽略大小写和多行模式),可居然连这种情况都搞不掂: go 如果删掉$就能匹配了,但这显然不是办法,遂又在VS的C#交互窗口. ...