首先, 还是以天气为例, 准备如下数据:

df1 = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'temperature': [21, 24, 32],
}) df2 = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'humidity': [89, 79, 80],
}) df = pd.merge(df1, df2, on='city')

输出:

上面的例子就是以 'city' 为基准对两个 dataframe 进行合并, 但是两组数据都是高度一致, 下面调整一下:

df1 = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando', 'baltimore'],
'temperature': [21, 24, 32, 29],
}) df2 = pd.DataFrame({
'city': ['newyork', 'chicago', 'san francisco'],
'humidity': [89, 79, 80],
}) df = pd.merge(df1, df2, on='city')

输出:

从输出我们看出, 通过 merge 合并, 会取两个数据的交集.

那么, 我们应该可以设想到, 可以通过调整参数, 来达到不同的取值范围. 
取并集:

df = pd.merge(df1, df2, on='city', how='outer')

输出:

左对齐:

df = pd.merge(df1, df2, on='city', how='left')

输出:

右对齐:

df = pd.merge(df1, df2, on='city', how='right')


另外, 在我们取并集的时候, 我们有时可能会想要知道, 某个数据是来自哪边, 可以通过 indicator 参数来获取:

df = pd.merge(df1, df2, on='city', how='outer', indicator=True)

输出:

在上面的例子中, 被合并的数据的列名是没有冲突的, 所以合并的很顺利, 那么如果两组数据有相同的列名, 又会是什么样呢? 看下面的例子:

df1 = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando', 'baltimore'],
'temperature': [21, 24, 32, 29],
'humidity': [89, 79, 80, 69],
}) df2 = pd.DataFrame({
'city': ['newyork', 'chicago', 'san francisco'],
'temperature': [30, 32, 28],
'humidity': [80, 60, 70],
}) df = pd.merge(df1, df2, on='city')

输出:

我们发现, 相同的列名被自动加上了 'x', 'y' 作为区分, 为了更直观地观察数据, 我们也可以自定义这个区分的标志:

df3 = pd.merge(df1, df2, on='city', suffixes=['_left', '_right'])

输出:

好了, 以上, 就是关于 merge 合并的相关内容, enjoy~~~

Pandas 基础(9) - 组合方法 merge的更多相关文章

  1. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  2. numpy&pandas基础

    numpy基础 import numpy as np 定义array In [156]: np.ones(3) Out[156]: array([1., 1., 1.]) In [157]: np.o ...

  3. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  4. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  5. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  6. Pandas基础学习与Spark Python初探

    摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ...

  7. Pandas 基础(1) - 初识及安装 yupyter

    Hello, 大家好, 昨天说了我会再更新一个关于 Pandas 基础知识的教程, 这里就是啦......Pandas 被广泛应用于数据分析领域, 是一个很好的分析工具, 也是我们后面学习 machi ...

  8. 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础

    在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...

  9. python学习笔记(四):pandas基础

    pandas 基础 serise import pandas as pd from pandas import Series, DataFrame obj = Series([4, -7, 5, 3] ...

随机推荐

  1. PHP指定时间戳/日期加一天,一年,一周,一月

    PHP指定时间戳加上1天,1周,1月,一年其实是不需要用上什么函数的!指定时间戳本身就是数字整型,我们只需要再计算1天,1周它的秒数相加即可! 博主搜索php指定时间戳加一天一年,结果许多的文章给出来 ...

  2. Exception occurred during processing request: id to load is required for loading

    ERROR Dispatcher:38 - Exception occurred during processing request: id to load is required for loadi ...

  3. 求最小生成树的kruskal算法

    连通无向图有最小生成树,边权从小到大排序,每次尝试加入权最小的边,如果不成圈,就把这边加进去,所有边扫一遍就求出了最小生成树. 判断连通分支用Union-Set(并查集),就是把连通的点看成一个集合, ...

  4. virtualenv与virtualenvwrapper虚拟环境

    python开发之virtualenv与virtualenvwrapper讲解 在使用 Python 开发的过程中,工程一多,难免会碰到不同的工程依赖不同版本的库的问题: 亦或者是在开发过程中不想让物 ...

  5. java_Arrays.sort()方法

    这个方法位于util包里,可以传入任一类型数组,默认按照字典序升序排序 如果要按照降序排序,直接写一个循环来颠倒顺序就好了 源码如下 String[] name = {"1",&q ...

  6. HashMap出现Hash DOS攻击的问题

    随着RESTful风格的接口普及,程序员默认都会使用json作为数据传递的方式.json格式的数据冗余少,兼容性高,从提出到现在已被广泛的使用,可以说成为了Web的一种标准.无论我们服务端使用什么语言 ...

  7. ext 的controller中的refs的使用方法

    通过ext api 可以知道ext 的controller中有个refs的属性,对于这个属性 文档上是这么说的:配置数组构建页面上的视图的引用. 我并看不懂,接下来说的是我对这个refs的理解. 对这 ...

  8. 【JVM】-NO.115.JVM.1 -【JDK11 HashMap详解-4-伸展树、B树】

    .Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...

  9. Struts2重要知识点总结

    一.interceptor拦截器的使用 第一种情况(指定action使用该拦截器):struts.xml文件的配置: <interceptors> <interceptor name ...

  10. HBase 笔记2

    Hadoop 服务启动顺序: zookeeper ->journalnode->namenode -> zkfc -> datanode HBase Master WEB控制台 ...