UVa - 10341
Solve the equation:
p ∗ e ^−x + q ∗ sin(x) + r ∗ cos(x) + s ∗ tan(x) + t ∗ x ^2 + u = 0
2 + u = 0
where 0 ≤ x ≤ 1.
Input
Input consists of multiple test cases and terminated by an EOF. Each test case consists of 6 integers in
a single line: p, q, r, s, t and u (where 0 ≤ p, r ≤ 20 and −20 ≤ q, s, t ≤ 0). There will be maximum
2100 lines in the input file.
Output
For each set of input, there should be a line containing the value of x, correct up to 4 decimal places,
or the string ‘No solution’, whichever is applicable.
Sample Input
0 0 0 0 -2 1
1 0 0 0 -1 2
1 -1 1 -1 -1 1
Sample Output
0.7071
No solution
0.7554
解题思路:
直接二分从0.0000搜到1.0000,搜到就输入没搜到就返回-1;注意这个函数是递减的
二分代码:
double solve()
{
double low=,high=,mid;
if(fuck(low)*fuck(high)>)
return -;
while(high-low>1e-)
{
mid = low+(high-low)/;
if(fuck(mid)<)
high=mid;
else
low=mid;
}
return low;
}
UVa - 10341的更多相关文章
- UVA 10341 Solve It 解方程 二分查找+精度
题意:给出一个式子以及里面的常量,求出范围为[0,1]的解,精度要求为小数点后4为. 二分暴力查找即可. e^(-n)可以用math.h里面的exp(-n)表示. 代码:(uva该题我老是出现Subm ...
- UVa 10341 - Solve It【经典二分,单调性求解】
原题: Solve the equation: p*e-x + q*sin(x) + r*cos(x) + s*tan(x) + t*x2 + u = 0 where ...
- UVA 10341 Solve It 二分
题目大意:给6个系数,问是否存在X使得等式成立 思路:二分.... #include <stdio.h> #include <math.h> #define EEE 2.718 ...
- UVA 10341 二分搜索
Solve the equation:p ∗ e−x + q ∗ sin(x) + r ∗ cos(x) + s ∗ tan(x) + t ∗ x2 + u = 0where 0 ≤ x ≤ 1.In ...
- UVa 10341 (二分求根) Solve It
很水的一道题,因为你发现这个函数是单调递减的,所以二分法求出函数的根即可. #include <cstdio> #include <cmath> //using namespa ...
- 【数值方法,水题】UVa 10341 - Solve It
题目链接 题意: 解方程:p ∗ e^(−x) + q ∗ sin(x) + r ∗ cos(x) + s ∗ tan(x) + t ∗ x^2 + u = 0 (0 <= x <= 1) ...
- UVa 10341 - Solve It
题目:给一个方程,求解方程的解.已给出解的范围,并且可知方程等号左侧的函数是递减的,可用二分法进行试探,直到得出给定误差范围内的解. #include <cstdio> #include ...
- UVA 10341.Solve It-二分查找
二分查找 二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序 ...
- uva 1354 Mobile Computing ——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5
随机推荐
- 2019 The 19th Zhejiang University Programming Contest
感想: 今天三个人的状态比昨天计院校赛的状态要好很多,然而三个人都慢热体质导致签到题wa了很多发.最后虽然跟大家题数一样(6题),然而输在罚时. 只能说,水题还是刷得少,看到签到都没灵感实在不应该. ...
- php 中self,this的区别和实地操作
面向对象编程(OOP,Object OrientedProgramming)现已经成为编程人员的一项基本技能.利用OOP的思想进行PHP的高级编程,对于提高PHP编程能力和规划web开发构架都是很有意 ...
- 移动端触摸(touch)事件
移动端时代已经到来,作为前端开发的我们没有理由也不应该坐井观天,而是勇敢地跳出心里的那口井,去拥抱蔚蓝的天空.该来的总会来,我们要做的就是接受未知的挑战.正如你所看到的,这是一篇关于移动端触摸事件的文 ...
- linux-shell-命令总结
第一种方法执行: 第二种方法执行: 第三种方法执行: 第四种方法:执行 第三种和第四种方法都是在新的进程里执行程序 函数方法 方法就是一个命令,命令写在字符串的第一个位置 type:可以接外部命令 ...
- 读《移山之道——VSTS软件开发指南》
读<移山之道>这本书差不多用了一个星期的时间,感觉还是收获了一些知识的,以前只是会简单地编个小程序(虽然现在也是这样),但看过这本书之后我对软件开发这个概念的认识度有了从一片模糊到了解大体 ...
- [2019BUAA软件工程]结对编程感想
结对编程感想 写在前面 本博客为笔者在完成软件工程结对编程任务后对于编程过程.最终得分的一些感想与经验分享.此外笔者还对于本课程的结对编程部分提出了一些建议. Tips Link 作业要求博客 2 ...
- 20135218 实践四 ELF文件格式分析
一 :概述 ELF全称Executable and Linkable Format,可执行连接格式,ELF格式的文件用于存储Linux程序.ELF文件(目标文件)格式主要三种: (1)可重定向文件:文 ...
- .NET组件介绍系列
一款开源免费的.NET文档操作组件DocX(.NET组件介绍之一)http://www.cnblogs.com/pengze0902/p/6122311.html 高效而稳定的企业级.NET Offi ...
- C++高质量编程笔记
/* * 函数介绍: * 输入参数: * 输出参数: * 返回值 : */ void Function(float x, float y, float z) { - } if (-) { - whil ...
- ubuntu——caffe配置deeplab
1. 下载deeplab 2. 安装matio sudo apt-get install libmatio-dev 3. 修改Makefile文件 LIBRARIES += glog gflags p ...