解答:

:容易用绝对值不等式证明当$x\in[1,5]$时$|x^2+px+q|\ge2$

MT【9】绝对值二次函数的更多相关文章

  1. MT【329】二次函数系数的最大最小

    已知二次函数$f(x)=ax^2+bx+c$有零点,且$a+b+c=1$ 若$t=\min\{a,b,c\}$求$t$的最大值. 分析:由$a,c$的对称性,不妨$c\ge a$即$2a+b\le1$ ...

  2. MT【219】构造二次函数

    (2012北大保送)已知$f(x)$是二次函数,且$a,f(a),f(f(a)),f(f(f(a)))$是正项等比数列;求证:$f(a)=a$ 构造二次函数$f(x)=qx$,则$a,f(a),f(f ...

  3. MT【54】一道二次函数问题的几何意义

    [Rather less, but better.]----卡尔·弗里德里希·高斯(1777-1855) (2016诸暨质检18)已知$f(x)=x^2-a|x-1|+b(a>0,b>-1 ...

  4. MT【39】构造二次函数证明

    这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...

  5. MT【37】二次函数与整系数有关的题

    解析: 评:两根式是不错的考虑方向,一方面二次函数两根式之前有相应的经验,另一方面这里$\sqrt{\frac{b^2}{4}-c}$正好和两个根有关系.

  6. MT【322】绝对值不等式

    已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$ 分析:不妨设$c=\max\{a,b,c\},\d ...

  7. MT【289】含参绝对值的最大值之三

    已知$a>0$,函数$f(x)=e^x+3ax^2-2e x-a+1$,(1)若$f(x)$在$[0,1]$上单调递减,求$a$的取值范围.(2)$|f(x)|\le1$对任意$x\in[0,1 ...

  8. MT【285】含参数函数绝对值的最大值

    (浙江2013高考压轴题)已知$a\in R$,函数$f(x)=x^3-3x^2+3ax-3a+3$(2)当$x\in[0,2]$时,求$|f(x)|$的最大值. 分析:由题意$f^{'}(x)=3x ...

  9. MT【270】含参绝对值函数最大之二

    已知$f(x)=2ax\cos^2x+(a-1)\cos x-1,a>0$,记$|f(x)|$的最大值为$A$,1)求A.2)证明:$|-2a\sin 2x+(1-a)\sin x|\le 2A ...

随机推荐

  1. CF58E Expression 搜索

    题目传送门:http://codeforces.com/problemset/problem/58/E 题意:给出一个形如$x+y=z$(不一定正确)的式子,试输出一个$a+b=c$的式子,满足:$1 ...

  2. Vue-条件渲染v-if与v-show

    一.共同点 根据数据值来判断是否显示DOM元素 二.区别 代码: <!DOCTYPE html> <html lang="en"> <head> ...

  3. 重写Override ToString()方法

    使用一个小例子来演示: 创建一个普通类别: class Ax { private int _ID; public int ID { get { return _ID; } set { _ID = va ...

  4. 五年.net程序员Java学习之路

    大学毕业后笔者进入一家外企,做企业CRM系统开发,那时候开发效率最高的高级程序语言,毫无疑问是C#.恰逢公司也在扩张,招聘了不少.net程序员,笔者作为应届生,也乐呵呵的加入到.net程序员行列中. ...

  5. 从Stampery到Chronicled,区块链公证业务的实践

    Stampery就是这样一家利用比特币区块链技术代替公证人的创业公司,能为所有的敏感文件提供具有法律约束力的证明.可以用Stampery证明任何文件,它能很好地保护知识产权,证明遗嘱.宣誓.合同.家庭 ...

  6. Centos下安装破解Jira7的操作记录

    Jira是一个集项目计划.任务分配.需求管理.错误跟踪于一体的工具,可以作为一个bug管理系统,可以将在测试过程中所发现的bug录入.分配给开发人员.前面介绍了Confluence在Centos下的安 ...

  7. linux-shell-变量参数

    sxt1 的生命周期随着调起而生效,结束就消失 子进程和父进程的关系,

  8. jenkins 上命令各种找不到问题

    代码: 兵马未动,粮草先行 作者: 传说中的汽水枪 如有错误,请留言指正,欢迎一起探讨. 转载请注明出处.   在使用jenkins的时候,会使用一些命令行,有的时候明明在电脑的命令行(终端)可以执行 ...

  9. BugPhobia发布篇章:Beta版本学霸在线系统正式发布

    0x00:测试报告版本管理 版本号 具体细节 修订时间 V 1.0 整理第一轮迭代用户管理和登陆注册的功能性验证测试,预计将继续网页对浏览器版本的兼容性测试 2015/11/12 V1.0.1 整理第 ...

  10. Linux内核分析第六周总结

    进程控制块PCB--task_struct 操作系统的内核里的三大功能: 进程管理 内存管理 文件系统 进程描述符--task_struct 进程管理是最核心的内容 然而Linux进程的状态与操作系统 ...