题目链接:http://codeforces.com/contest/327/problem/C

首先先算出一个周期里面的值,保存在ans里面,就是平常的快速幂模m做法.

然后要计算一个公式,比如有k个部分,那么对于没一个位置i, 都有2^i + 2^(i+n) + ... + 2^(i+(k-1)*n) = 2^i(1 + 2^n + ... + 2^((k-1)*n)) = 2^i * (1-2^(n*k))/(1-2^n)

所以结果就是ans * (1-2^(n*k))/(1-2^n) % MOD;

然后就是关键计算(1-2^(n*k))/(1-2^n) % MOD;

用到费马小定理a^(p-1)同余于1(mod 1).p是一个质数,那么a^(p-2) * a 同余于1(mod 1) ,所以a  的逆元就是 a^(p-2)

MOD是一个质数,所以(1-2^(n*k))/(1-2^n) % MOD = (2^(n*k)-1)/(2^n-1) % MOD = (2^(n*k)-1)%MOD * ((2^n-1)^(MOD-2))%MOD

 /*
* =====================================================================================
* Filename: magic.cpp
* Created: 19/07/2013 12:27:18
* Author: liuxueyang (lxy), 1459917536@qq.com
* Organization: Hunan University
*
* =====================================================================================
*/ /*
ID: zypz4571
LANG: C++
TASK: magic
*/
#include <cstdlib>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <queue>
#include <set>
#include <stack>
#include <map>
#include <list>
using namespace std;
#define INF 0x3f3f3f3f
const double eps=1e-;
char a[];
const int MOD=;
#define LL long long
int k;
LL quick(LL a, LL b) {
LL ans=;
while (b) {
if(b&) ans=(ans*a)%MOD; b/=; a*=a; a%=MOD;
}
return ans;
}
int main ( int argc, char *argv[] )
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif
int k; string s; cin>>s>>k; LL n=s.size();
LL a=quick(,n*k)-+MOD; a=(a+MOD)%MOD;
LL b=quick((quick(,n)-+MOD)%MOD,MOD-); b=(b+MOD)%MOD;
LL ans=;
for(size_t i = ; i < n; ++i) if (s[i]==''||s[i]=='') ans=(ans+quick(,i))%MOD;
cout<<a*b%MOD*ans%MOD<<endl;
return EXIT_SUCCESS;
} /* ---------- end of function main ---------- */

搞定,收工

codeforces magic five --快速幂模的更多相关文章

  1. 快速幂模n运算

    模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一 ...

  2. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  3. hdu 2462(欧拉定理+高精度快速幂模)

    The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  4. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  5. codeforces 691E 矩阵快速幂+dp

    传送门:https://codeforces.com/contest/691/problem/E 题意:给定长度为n的序列,从序列中选择k个数(可以重复选择),使得得到的排列满足xi与xi+1异或的二 ...

  6. hdu 1852(快速幂模+有除法的时候取模的公式)

    Beijing 2008 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Tota ...

  7. Xor-sequences CodeForces - 691E || 矩阵快速幂

    Xor-sequences CodeForces - 691E 题意:在有n个数的数列中选k个数(可以重复选,可以不按顺序)形成一个数列,使得任意相邻两个数异或的结果转换成二进制后其中1的个数是三的倍 ...

  8. 大数的快速幂模 Python实现

    要求 实现模幂算法,通过服务器的检验. 访问http://2**.207.12.156:9012/step_04服务器会给你10个问题,每个问题包含三个数(a,b,c),请给出a^b%c的值.返回值写 ...

  9. [原]sdut2605 A^X mod P 山东省第四届ACM省赛(打表,快速幂模思想,哈希)

    本文出自:http://blog.csdn.net/svitter 题意: f(x) = K, x = 1 f(x) = (a*f(x-1) + b)%m , x > 1 求出( A^(f(1) ...

随机推荐

  1. java udp网络编程

    import java.net.*; /* 通过UDP传输发送文字数据 1.建立socket服务 2.提供数据,并封装到数据包中 3.通过sokect服务的发送功能,将数据包发送出去 4.关闭资源 * ...

  2. AbstractMap学习记录

    package java.util;import java.util.Map.Entry; /** * This class provides a skeletal implementation of ...

  3. @ModelAttribute注解的作用

    @ModelAttribute注解的作用:1.放在方法上注解不带属性: 方法无返回值: 执行其他方法时,先执行该注解标记方法. 如果方法中有将一些属性放入model的操作,其他方法model中也会共享 ...

  4. MongoDB数据访问[C#]附源码下载(查询增删改) 转载

    安装完MongoDBhttp://localhost:28017/监测是否成功! vs 2008 C# MongoDB 源代码下载地址:http://download.csdn.net/source/ ...

  5. Oracle普通索引,唯一索引,主键的区别

    索引是我们经常使用的一种数据库优化手段,适当的业务操作场景使用适当的索引方案,可以显著的提升系统整体查询性能,当然用户体验也随之提高. 在Oracle中,唯一性索引(Unique Index)是我们经 ...

  6. mp3文件 ID3v2 帧标识的含义

    mp3文件 ID3v2 帧标识的含义 Declared ID3v2 frames The following frames are declared in this draft. 4.20 AENC ...

  7. More on Conditions - To Compare -Comparing Sequences and Other Types

    The conditions used in while and if statements can contain any operators, not just comparisons. The ...

  8. HTTP请求错误大全

    HTTP 400 - 请求无效HTTP 401.1 - 未授权:登录失败 HTTP 401.2 - 未授权:服务器配置问题导致登录失败 HTTP 401.3 - ACL 禁止访问资源 HTTP 401 ...

  9. IOS 封装类的时候注释格式,使用的时候可以想官方库一样快捷显示

    /** @brief 详情 @param 参数 @note 注意 @return 返回值类型 @code 这里写例题代码 @endcode @see 相似的方法参考 */

  10. Android开发指南-框架主题-安全和许可

    概述:Android操作系统是一个安全便捷的Linux系统,遵循Linux系统机制,允许多进程.为了进程间的数据共享和交互共用,设计"权限"这个名词,声明权限代表可使用此权限,未声 ...