poj - 3683 - Priest John's Busiest Day(2-SAT)
题意:有N场婚礼,每场婚礼的开始时间为Si,结束时间为Ti,每场婚礼有个仪式,历时Di,这个仪式要么在Si时刻开始,要么在Ti-Di时刻开始,问能否安排每场婚礼举行仪式的时间,使主持人John能参加所有的这些仪式的全过程。
题目链接:http://poj.org/problem?id=3683
——>>每场婚礼的仪式,要么在开始段举行,要么在结束段举行,且一定要举行,要求各场婚礼仪式没冲突——>>2-SAT。。。
2-SAT挺神,针对此类问题,可谓手到擒来。。。
LJ《训练指南》上的写法挺容易理解的。。。于是用上了。。。(相对于2003年伍昱论文中O(n)的算法,在时间上《训练指南》中的写法比不上)。。。
对于2-SAT,建图非常重要。。。
——>>设一场婚礼为i,mark[2*i] == 1表示在其开始段举行仪式,mark[2*i+1] == 1表示在其结束段举行仪式。。。
建图思路:对于一个仪式i和另一个仪式j,若i与j有冲突,则说明i不能举行或者j不能举行。。。即i == 0 || j == 0,所以,i' -> j,j' -> i。。。
#include <cstdio>
#include <cstring>
#include <vector> using namespace std; const int maxn = 1000 + 10; int N;
int S[maxn], S1[maxn], S2[maxn], T[maxn], T1[maxn], T2[maxn], D[maxn];
int t[maxn][2]; struct Twoset {
int n;
vector<int> G[maxn*2];
bool mark[maxn*2];
int stk[maxn*2], c; void init(int n) {
this->n = n;
for(int i = 0; i < 2*n; i++) G[i].clear();
memset(mark, 0, sizeof(mark));
} void add_clause(int x, int xval, int y, int yval) {
x = x * 2 + xval;
y = y * 2 + yval;
G[x^1].push_back(y);
G[y^1].push_back(x);
} bool dfs(int x) {
if(mark[x^1]) return false;
if(mark[x]) return true;
mark[x] = true;
stk[++c] = x;
int sz = G[x].size();
for(int i = 0; i < sz; i++) {
int v = G[x][i];
if(!dfs(v)) return false;
}
return true;
} bool YES() {
for(int i = 0; i < 2*n; i += 2) if(!mark[i] && !mark[i+1]) {
c = 0;
if(!dfs(i)) {
while(c) mark[stk[c--]] = false;
if(!dfs(i+1)) return false;
}
}
return true;
} void solve() {
if(YES()) {
puts("YES");
for(int i = 0; i < 2*n; i++) if(mark[i]) {
int id = i / 2;
if(i&1) printf("%02d:%02d %02d:%02d\n", (T[id]-D[id])/60, (T[id]-D[id])%60, T[id]/60, T[id]%60);
else printf("%02d:%02d %02d:%02d\n", S[id]/60, S[id]%60, (S[id]+D[id])/60, (S[id]+D[id])%60);
}
}
else puts("NO");
}
} solver; bool isok(int L1, int R1, int L2, int R2) { //判断两个仪式是否冲突
return R1 <= L2 || R2 <= L1;
} void read() {
for(int i = 0; i < N; i++) {
scanf("%d:%d %d:%d %d", &S1[i], &S2[i], &T1[i], &T2[i], &D[i]);
S[i] = S1[i] * 60 + S2[i];
T[i] = T1[i] * 60 + T2[i];
t[i][0] = S[i];
t[i][1] = T[i] - D[i];
}
} void build() {
for(int i = 0; i < N; i++) for(int a = 0; a < 2; a++)
for(int j = i+1; j < N; j++) for(int b = 0; b < 2; b++)
if(!isok(t[i][a], t[i][a]+D[i], t[j][b], t[j][b]+D[j])) //有冲突,不能同时赋a,b,所以a^1或者b^1成立
solver.add_clause(i, a^1, j, b^1);
} int main()
{
while(scanf("%d", &N) == 1) {
solver.init(N);
read();
build();
solver.solve();
}
return 0;
}
poj - 3683 - Priest John's Busiest Day(2-SAT)的更多相关文章
- POJ 3683 Priest John's Busiest Day (2-SAT)
Priest John's Busiest Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6900 Accept ...
- POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)
Priest John's Busiest Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10010 Accep ...
- POJ 3683 Priest John's Busiest Day(2-SAT 并输出解)
Description John is the only priest in his town. September 1st is the John's busiest day in a year b ...
- POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题)
POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题) Descripti ...
- POJ 3683 Priest John's Busiest Day (2-SAT)
题意:有n对新人要在同一天结婚.结婚时间为Ti到Di,这里有时长为Si的一个仪式需要神父出席.神父可以在Ti-(Ti+Si)这段时间出席也可以在(Di-Si)-Si这段时间.问神父能否出席所有仪式,如 ...
- POJ 3683 Priest John's Busiest Day (2-SAT,常规)
题意: 一些人要在同一天进行婚礼,但是牧师只有1个,每一对夫妻都有一个时间范围[s , e]可供牧师选择,且起码要m分钟才主持完毕,但是要么就在 s 就开始,要么就主持到刚好 e 结束.因为人数太多了 ...
- POJ 3683 Priest John's Busiest Day[2-SAT 构造解]
题意: $n$对$couple$举行仪式,有两个时间段可以选择,问是否可以不冲突举行完,并求方案 两个时间段选择对应一真一假,对于有时间段冲突冲突的两人按照$2-SAT$的规则连边(把不冲突的时间段连 ...
- POJ 3683 Priest John's Busiest Day 【2-Sat】
这是一道裸的2-Sat,只要考虑矛盾条件的判断就好了. 矛盾判断: 对于婚礼现场 x 和 y,x 的第一段可以和 y 的第一段或者第二段矛盾,同理,x 的第二段可以和 y 的第一段或者第二段矛盾,条件 ...
- POJ 3683 Priest John's Busiest Day
看这个题目之前可以先看POJ2186复习一下强联通分量的分解 题意:给出N个开始时间和结束时间和持续时间三元组,持续时间可以在开始后或者结束前,问如何分配可以没有冲突. -----–我是分割线---- ...
随机推荐
- hihoCoder #1179 : 永恒游戏 (暴力枚举)
题意: 给出一个有n个点的无向图,每个点上有石头数个,现在的游戏规则是,设置某个点A的度数为d,如果A点的石子数大于等于d,则可以从A点给每个邻接点发一个石子.如果游戏可以玩10万次以上,输出INF, ...
- POJ2236 Wireless Network
解题思路:简单并查集,注意时间限制是10000MS,每次进行O操作之后, 进行一次for循环,进行相关调整.同时注意输入输出格式,见代码: #include<cstdio> #incl ...
- Java中原子类的实现
Java提供的原子类是靠sun基于CAS实现的,CAS是一种乐观锁.关于乐观锁与悲观锁. 原子变量类相当于一种泛化的volatile变量,能够支持原子的和有条件的读-改-写操作.AtomicInteg ...
- 【转】Git连接oschina管理代码版本
原文网址:http://blog.csdn.net/liukang325/article/details/24051467 工作中一般都是用的SVN,最近好像GitHub有些火,看到开源中国上也有Gi ...
- Hadoop学习总结之二:HDFS读写过程解析
一.文件的打开 1.1.客户端 HDFS打开一个文件,需要在客户端调用DistributedFileSystem.open(Path f, int bufferSize),其实现为: public F ...
- SignalR 循序渐进
SignalR 循序渐进(五)多个Hub服务器下的消息订阅 hellsoul86 2014-08-18 11:29 阅读:840 评论:7 SignalR 循序渐进(四) Hub的生命周期以及 ...
- ajax实现md5加密
一个asp.net ajax例子,使用jquery,实现md5加密..NET 4.0,Visual Studio 2010以上.效果体验:http://tool.keleyi.com/t/md5.ht ...
- 实现3D摄像机缓冲系统的一些思考
最近需要模拟红侠乔伊的镜头运用.这东西初看简单,实际还是很需要功夫的.关键不是程序技术如何(就一个摄像机),而是分析其轨迹和追踪点规律.其实就是一个3D空间中的缓冲系统.你如何确定都有什么参数,这么多 ...
- js遇到这样基础题,看你能不能作对呢
var a = (function() { return typeof arguments; })(); alert(a); //Object var b = (function(x) { delet ...
- AI线性图标教程-转起