D. New Year Santa Network
 

New Year is coming in Tree World! In this world, as the name implies, there are n cities connected by n - 1 roads, and for any two distinct cities there always exists a path between them. The cities are numbered by integers from 1 to n, and the roads are numbered by integers from 1 to n - 1. Let's define d(u, v) as total length of roads on the path between city u and city v.

As an annual event, people in Tree World repairs exactly one road per year. As a result, the length of one road decreases. It is already known that in the i-th year, the length of the ri-th road is going to become wi, which is shorter than its length before. Assume that the current year is year 1.

Three Santas are planning to give presents annually to all the children in Tree World. In order to do that, they need some preparation, so they are going to choose three distinct cities c1, c2, c3 and make exactly one warehouse in each city. The k-th (1 ≤ k ≤ 3) Santa will take charge of the warehouse in city ck.

It is really boring for the three Santas to keep a warehouse alone. So, they decided to build an only-for-Santa network! The cost needed to build this network equals to d(c1, c2) + d(c2, c3) + d(c3, c1) dollars. Santas are too busy to find the best place, so they decided to choose c1, c2, c3 randomly uniformly over all triples of distinct numbers from 1 to n. Santas would like to know the expected value of the cost needed to build the network.

However, as mentioned, each year, the length of exactly one road decreases. So, the Santas want to calculate the expected after each length change. Help them to calculate the value.

Input

The first line contains an integer n (3 ≤ n ≤ 105) — the number of cities in Tree World.

Next n - 1 lines describe the roads. The i-th line of them (1 ≤ i ≤ n - 1) contains three space-separated integers aibili (1 ≤ ai, bi ≤ n,ai ≠ bi, 1 ≤ li ≤ 103), denoting that the i-th road connects cities ai and bi, and the length of i-th road is li.

The next line contains an integer q (1 ≤ q ≤ 105) — the number of road length changes.

Next q lines describe the length changes. The j-th line of them (1 ≤ j ≤ q) contains two space-separated integers rjwj (1 ≤ rj ≤ n - 1,1 ≤ wj ≤ 103). It means that in the j-th repair, the length of the rj-th road becomes wj. It is guaranteed that wj is smaller than the current length of the rj-th road. The same road can be repaired several times.

Output

Output q numbers. For each given change, print a line containing the expected cost needed to build the network in Tree World. The answer will be considered correct if its absolute and relative error doesn't exceed 10 - 6.

Sample test(s)
input
3
2 3 5
1 3 3
5
1 4
2 2
1 2
2 1
1 1
output
14.0000000000
12.0000000000
8.0000000000
6.0000000000
4.0000000000
input
6
1 5 3
5 3 2
6 1 7
1 4 4
5 2 3
5
1 2
2 1
3 5
4 1
5 2
output
19.6000000000
18.6000000000
16.6000000000
13.6000000000
12.6000000000
Note

Consider the first sample. There are 6 triples: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). Because n = 3, the cost needed to build the network is always d(1, 2) + d(2, 3) + d(3, 1) for all the triples. So, the expected cost equals to d(1, 2) + d(2, 3) + d(3, 1).

 题意:

给你一颗树,边有权值,现在让你计算任意三个不同的点的距离和的期望

题解:

对于任取三个点,我们可以知道有sum=n*(n-1)*(n-2)/6中取法,

我们对于到达x的边序号id,x及其子树节点数为size[x],那么  对于经过x这个点的取法就有  tmp=size[x]*(n-size[x])*(n-2)

对于使用id这条边其概率就是  pid= tmp/sum

期望就是 w[i]*pid

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define fi first
#define se second
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod;for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head const int N=;
int sz[N],w[N],n,u,v,m;
vector<PII> e[N];
double prob[N],ret;
void dfs(int u,int f,int id) {
sz[u]=;
rep(j,,SZ(e[u])) {
int v=e[u][j].fi;
if (v==f) continue;
dfs(v,u,e[u][j].se);
sz[u]+=sz[v];
}
prob[id]=6.0*sz[u]*(n-sz[u])/n/(n-);
}
int main() {
scanf("%d",&n);
rep(i,,n) {
scanf("%d%d%d",&u,&v,w+i);
e[u].pb(mp(v,i));
e[v].pb(mp(u,i));
}
dfs(,,);
//for(int i=1;i<=n;i++) cout<<prob[i]<<" ";cout<<endl;
rep(i,,n) ret+=w[i]*prob[i];
scanf("%d",&m);
rep(i,,m) {
scanf("%d%d",&u,&v);
v=w[u]-v;
ret-=v*prob[u];
printf("%.10f\n",ret);
w[u]-=v;
}
}

代码

Good Bye 2014 D. New Year Santa Network 图论+期望的更多相关文章

  1. CF 500D New Year Santa Network tree 期望 好题

    New Year is coming in Tree World! In this world, as the name implies, there are n cities connected b ...

  2. cf500D New Year Santa Network

    D. New Year Santa Network time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces 500D New Year Santa Network(树 + 计数)

    D. New Year Santa Network time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  4. Codeforces 500D. New Year Santa Network

    题目大意 给你一颗有\(n\)个点的树\(T\),边上有边权. 规定,\(d(i,j)\)表示点i到点j路径上的边权之和. 给你\(q\)次询问,每次询问格式为\(i, j\),表示将按输入顺序排序的 ...

  5. D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)

    Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...

  6. Hello world,Hello 2015,Bye 2014

    序 在我写下“在”这个字的时候已经是2014-12-31 19:59,14年最后一天了,总觉得不写点东西祭奠一下那些被自己虐死的脑细胞,心里就不舒服. 那就从生活,工作,学习三个方面,总结一下吧. 生 ...

  7. CodeForces Good Bye 2014 B. New Year Permutation

    可能是因为这次没有分Div.1和Div.2,所以感觉题的难度比较大. 题意: 给出一个1~n的排列和一个邻接矩阵A,Aij = 1表示可以交换排列的第i项和第j项,问经过若干次交换后,求能够得到最小字 ...

  8. Good Bye 2014 F - New Year Shopping

    F - New Year Shopping 对于一种特殊的不可逆的dp的拆分方法.. 也可以用分治写哒. #include<bits/stdc++.h> #define LL long l ...

  9. Good Bye 2014 E - New Year Domino 单调栈+倍增

    E - New Year Domino 思路:我用倍增写哒,离线可以不用倍增. #include<bits/stdc++.h> #define LL long long #define f ...

随机推荐

  1. SQLite之读取数据库内容

    1.打开已有数据库. //打开数据库 - (BOOL )openDB {// 红色部分修改为自己的数据库路径 return (SQLITE_OK == sqlite3_open([@"/Us ...

  2. homework-03 扑街。。

    1.思路 我的思路是利用进程间通信间来实现题目要求. 第一次打开的程序与第二次打开的程序并不是同一个进程,故需要进程间通信来是传递信息. windows下进程间通信的方式有很多,如文件映射.共享内存. ...

  3. JAVA类与对象(十)-----抽象类

    在面向对象的概念中,所有的对象都是通过类来描绘的,但是反过来,并不是所有的类都是用来描绘对象的,如果一个类中没有包含足够的信息来描绘一个具体的对象,这样的类就是抽象类. 抽象类除了不能实例化对象之外, ...

  4. JAVA类与对象(八)-----重写

    重写:子类对父类的允许访问的方法的实现过程进行重新编写!返回值和形参都不能改变.即:外壳不变,核心重写! 好处:可以根据子类的需要,定义特定于自己的行为.也就是说子类能够根据需要实现父类的方法. cl ...

  5. TI IPNC Web网页之流程分析

    流程 Appro IPNC使用的web服务器是boa. 请仔细理解下面这段话. boa这个web服务器是GUI界面和IPNC应用程序之间的通信的桥梁.它的责任是从web GUI中接收HTTP请求,并且 ...

  6. Oracle数据文件在open状态被删除的恢复记录

    1.查看当前状态: SQL> select status from v$instance; STATUS------------OPEN SQL> show parameter name; ...

  7. python中fork()函数生成子进程分析

    python的os module中有fork()函数用于生成子进程,生成的子进程是父进程的镜像,但是它们有各自的地址空间,子进程复制一份父进程内存给自己,两个进程之 间的执行是相互独立的,其执行顺序可 ...

  8. PE格式的理解(待补充)

    PE文件格式 一.基本结构 1.DOS头一般到节区头成为PE头部分,其下称为PE体.文件的内容一般可分为代码(.text).数据(.data).资源(.rsrc),分别保存. 2.PE头与各节区的尾部 ...

  9. “我爱淘”第二冲刺阶段Scrum站立会议1

    完成任务: 完成了webservice的配置与测试,实现了在客户端的搜索功能,并且可以实现图书的发布功能,就是将图书的信息添加到数据库中. 计划任务: 在客户端实现分类功能,通过学院的分类查看书籍. ...

  10. 用setTimeout 代替 setInterval实时拉取数据

    在开发中,我们常常碰到需要定时拉取网站数据,如: setInterval(function(){ $.ajax({ url: 'xx', success: function( response ){ ...