平衡二叉树

LL RR LR RL 注意画图理解法

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print the root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Output 1:

70

Sample Input 2:

7
88 70 61 96 120 90 65

Sample Output 2:

88
 //平衡二叉树 AVL
#include <stdio.h>
#include <stdlib.h> typedef int ElementType; typedef struct AVLNode *Position;
typedef Position AVLTree; /* AVL树类型 */
typedef struct AVLNode{
ElementType data; /* 结点数据 */
AVLTree left; /* 指向左子树 */
AVLTree right; /* 指向右子树 */
int height; /* 树高 */
}; int Max ( int a, int b )
{
return a > b ? a : b;
} int GetHeight( Position p )
{
if(!p)
return -;
return p->height;
} /* 将A与B做左单旋,更新A与B的高度,返回新的根结点B */
/* 注意:A必须有一个左子结点B */
AVLTree SingleLeftRotation ( AVLTree A )
{
AVLTree B = A->left;
A->left = B->right;
B->right = A;
A->height = Max( GetHeight(A->left), GetHeight(A->right) ) + ;
B->height = Max( GetHeight(B->left), A->height ) + ; return B;
}
/* 将A与B做右单旋,更新A与B的高度,返回新的根结点B */
/* 注意:A必须有一个右子结点B */
AVLTree SingleRightRotation ( AVLTree A )
{
AVLTree B = A->right;
A->right = B->left;
B->left = A;
A->height = Max( GetHeight(A->left), GetHeight(A->right) ) + ;
B->height = Max( A->height, GetHeight(B->right) ) + ; return B;
} /* 注意:A必须有一个左子结点B,且B必须有一个右子结点C */
/* 将A、B与C做两次单旋,返回新的根结点C */
AVLTree DoubleLeftRightRotation ( AVLTree A )
{
/* 将B与C做右单旋,C被返回 */
A->left = SingleRightRotation(A->left);
/* 将A与C做左单旋,C被返回 */
return SingleLeftRotation(A);
} /* 将A、B与C做两次单旋,返回新的根结点C */
/* 注意:A必须有一个右子结点B,且B必须有一个左子结点C */
AVLTree DoubleRightLeftRotation ( AVLTree A )
{
/* 将B与C做右单旋,C被返回 */
A->right = SingleLeftRotation(A->right);
/* 将A与C做左单旋,C被返回 */
return SingleRightRotation(A);
} /* 将X插入AVL树T中,并且返回调整后的AVL树 */
AVLTree Insert( AVLTree T, ElementType X )
{
if ( !T ) { /* 若插入空树,则新建包含一个结点的树 */
T = (AVLTree)malloc(sizeof(struct AVLNode));
T->data = X;
T->height = ;
T->left = T->right = NULL;
} /* if (插入空树) 结束 */ else if ( X < T->data ) {
T->left = Insert( T->left, X);/* 插入T的左子树 */
if ( GetHeight(T->left)-GetHeight(T->right) == ) /* 如果需要左旋 */
if ( X < T->left->data )
T = SingleLeftRotation(T); //左单旋 LL
else
T = DoubleLeftRightRotation(T); //左-右双旋LR
} /* else if (插入左子树) 结束 */ else if ( X > T->data ) {
T->right = Insert( T->right, X );/* 插入T的右子树 */
if ( GetHeight(T->left)-GetHeight(T->right) == - )/* 如果需要右旋 */
if ( X > T->right->data )
T = SingleRightRotation(T); //右单旋 RR
else
T = DoubleRightLeftRotation(T); //右-左双旋 RL
} /* else if (插入右子树) 结束 */ /*else X == T->Data,无须插入 */
T->height = Max( GetHeight(T->left), GetHeight(T->right) ) + ; //更新树高 return T;
} int main()
{
int N, data;
AVLTree T;
scanf("%d",&N);
for(int i = ; i < N; i++) {
scanf("%d",&data);
T = Insert(T,data);
}
printf("%d\n",T->data);
return ;
}
 
 

04-树5 Root of AVL Tree的更多相关文章

  1. 04-树5 Root of AVL Tree + AVL树操作集

    平衡二叉树-课程视频 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the tw ...

  2. PAT 1066 Root of AVL Tree[AVL树][难]

    1066 Root of AVL Tree (25)(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, ...

  3. PTA (Advanced Level) 1066 Root of AVL Tree

    Root of AVL Tree An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of ...

  4. PAT甲级1066. Root of AVL Tree

    PAT甲级1066. Root of AVL Tree 题意: 构造AVL树,返回root点val. 思路: 了解AVL树的基本性质. AVL树 ac代码: C++ // pat1066.cpp : ...

  5. 04-树4. Root of AVL Tree (25)

    04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  6. pat04-树4. Root of AVL Tree (25)

    04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  7. pat 甲级 1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  8. PTA 04-树5 Root of AVL Tree (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree   (25分) An AVL tree ...

  9. PAT_A1066#Root of AVL Tree

    Source: PAT A1066 Root of AVL Tree (25 分) Description: An AVL tree is a self-balancing binary search ...

  10. PAT-1066(Root of AVL Tree)Java语言实现

    Root of AVL Tree PAT-1066 这是关于AVL即二叉平衡查找树的基本操作,包括旋转和插入 这里的数据结构主要在原来的基础上加上节点的高度信息. import java.util.* ...

随机推荐

  1. OC基础(23)

    NSArray基本概念 NSArray 遍历 NSArray排序 NSArray文件读写 NSArray 与字符串 *:first-child { margin-top: 0 !important; ...

  2. 下载和使用 Open XML PowerTools

    安装 Open XML SDK 2.5 首先,需要安装 Open XML SDK 2.5 ,从这个地址下载安装程序:http://www.microsoft.com/en-in/download/de ...

  3. android 如何设置背景的透明度

    半透明<Button android:background="#e0000000" ... />透明<Button android:background=&quo ...

  4. xcode7.3 升级 xcode8.0 后权限设置问题(升级xcode 8.0 后构建版本不显示问题)

    xcode7.3 升级 xcode8.0 后权限设置问题(升级xcode 8.0 后构建版本不显示问题) 前两天为了适配 iOS10 的系统 我将xcode 7.3 升级到了 xcode 8.0 但是 ...

  5. Add, remove, shuffle and sort

    To deal cards, we would like a method that removes a card from the deck and returns it. The list met ...

  6. WebView 获取网页点击事件

    网页上的点击按钮 本身绑定了URL,点击的时候webview 会在下面的这个方法中加载URL - (BOOL)webView:(UIWebView*)webView shouldStartLoadWi ...

  7. [oracle] listener.ora 、sqlnet.ora 、tnsnames.ora

    路径 $ORACLE_HOME/network/admin sqlnet.ora(客户及服务器端) 作用类似于linux或者其他unix的nsswitch.conf文件,通过这个文件来决定怎么样找一个 ...

  8. JS 在open打开的子窗口页面中调用父窗口页面的JS方法

    需求的情景如下: 1:做新增或修改等操作的时候打开一个新的浏览器窗口(使用window.open(参数等)方法) 2:在新增或修改等的页面上有返回按钮.重置按钮.保存按钮,对于返回就直接关闭此窗口(使 ...

  9. 学习记录 java 链表知识

    01.import java.util.HashMap; 02.import java.util.Scanner; 03.import java.util.Stack; 04. 05./** 06. ...

  10. Facebook 的系统架构(转)

    来源:http://www.quora.com/What-is-Facebooks-architecture(由Micha?l Figuière回答) 根据我现有的阅读和谈话,我所理解的今天Faceb ...