1、修订单个socket的缓冲区大小:通过setsockopt使用SO_RCVBUF来设置接收缓冲区,该参数在设置的时候不会与rmem_max进行对比校验,但是如果设置的大小超过rmem_max的话,则超过rmem_max的部分不会生效;
2、修订linux系统udp缓冲区大小:通过rmem_max来设置系统中udp缓存的上限,该值可通过如下方式查看:
root@ubuntu:/mnt/hgfs/vm-shared/socket# cat /proc/sys/net/core/rmem_max
131071
通过如下方式进行修订:
root@ubuntu:/mnt/hgfs/vm-shared/socket# vi /etc/sysctl.conf
在文件/etc/sysctl.conf中新增如下信息:
rmem_max=MAX
需要注意的这里设置的rmem_max参数是整个系统的大小,不是单个socket的大小。
修订后的大小可以通过如下命令查看:
root@ubuntu:/mnt/hgfs/vm-shared/socket# sysctl -a | grep rmem_max
net.core.rmem_max = 131071

总结
要修订linux udp收包缓冲大小,需要上述两个地方同时修改。
只改第1点,缓冲区大小会受到rmem_max的限制。
只改第2点,一个socket只会预留63个报文的接收缓冲。

发包缓冲区与收包缓冲区一样,只不过参数名称不一样:SO_SNDBUF、wmem_max。

通过如下命令可以查看对应缓冲区中现有的报文数量:
root@ubuntu:/mnt/hgfs/vm-shared/socket# netstat -na | more
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State      
tcp        0      0 0.0.0.0:111             0.0.0.0:*               LISTEN     
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN     
tcp        0      0 0.0.0.0:23              0.0.0.0:*               LISTEN     
tcp        0      0 127.0.0.1:631           0.0.0.0:*               LISTEN     
tcp        0      0 0.0.0.0:53113           0.0.0.0:*               LISTEN     
tcp        0      0 0.0.0.0:35551           0.0.0.0:*               LISTEN     
tcp        0      0 0.0.0.0:2049            0.0.0.0:*               LISTEN     
tcp        0      0 0.0.0.0:42697           0.0.0.0:*               LISTEN     
tcp        0     52 192.168.16.55:22        192.168.16.48:57258     ESTABLISHED
tcp6       0      0 :::22                   :::*                    LISTEN     
tcp6       0      0 ::1:631                 :::*                    LISTEN     
tcp6       0      0 :::445                  :::*                    LISTEN     
tcp6       0      0 :::139                  :::*                    LISTEN     
udp        0      0 0.0.0.0:58548           0.0.0.0:*                          
udp        0      0 0.0.0.0:68              0.0.0.0:*                          
udp        0      0 0.0.0.0:52684           0.0.0.0:*                          
udp        0      0 0.0.0.0:57298           0.0.0.0:*                          
udp        0      0 0.0.0.0:5353            0.0.0.0:*                          
udp        0      0 0.0.0.0:54889           0.0.0.0:*                          
udp        0      0 0.0.0.0:111             0.0.0.0:*                          
udp        0      0 0.0.0.0:2049            0.0.0.0:*                          
udp   260464      0 0.0.0.0:2435            0.0.0.0:*      
这个例子中端口号为2435的socket缓存了260464/1784 = 146个报文。

关于TCP/UDP缓存的更多相关文章

  1. 高性能 TCP/UDP/HTTP 通信框架 HP-Socket v4.1.1

    HP-Socket 是一套通用的高性能 TCP/UDP/HTTP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP/HTTP 通信系统,提供 C/ ...

  2. 高性能 TCP/UDP/HTTP 通信框架 HP-Socket v4.1.2

    HP-Socket 是一套通用的高性能 TCP/UDP/HTTP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP/HTTP 通信系统,提供 C/ ...

  3. 高性能 TCP/UDP/HTTP 通信框架 HP-Socket v4.0.1

    HP-Socket 是一套通用的高性能 TCP/UDP/HTTP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP/HTTP 通信系统,提供 C/ ...

  4. 高性能 TCP & UDP 通信框架 HP-Socket v3.5.3

    HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#.Del ...

  5. 高性能 TCP & UDP 通信框架 HP-Socket v3.5.2

    HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#.Del ...

  6. 高性能 TCP & UDP 通信框架 HP-Socket v3.5.1

    HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#.Del ...

  7. 高性能 TCP & UDP 通信框架 HP-Socket v3.4.1

    HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#.Del ...

  8. 高性能 TCP & UDP 通信框架 HP-Socket v3.3.1

    HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#.Del ...

  9. 高性能 TCP & UDP 通信框架 HP-Socket v3.2.3

    HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#.Del ...

随机推荐

  1. 545C. Woodcutters

    题目链接 题意: n个树,在x1,x2,...,xn的位置,树的高度依次是h1,h2,...,hn 求的是当把树砍倒时候,不占用相邻树的位置,最大砍树个数 可向左 向右砍,即树向左向右倒,很显然 当树 ...

  2. libevent功能使用简介

    http://blog.csdn.net/happyanger6/article/details/7272324 1. 介绍 libevent是一个用来开发可扩展的网络服务器的事件通知函数库.当一个文 ...

  3. haproxy重启

    ps -aux | grep haproxy.cfg sudo kill -9 pidsudo /data/tools/haproxy/sbin/haproxy -f /data/tools/hapr ...

  4. 针对安卓java入门:数据类型

    基本数据类型: 布尔型----boolean字符型----char 用单引号整数型----byte(字节型),short(短整型),int(整型),long(长整型)浮点数型--float(浮点型), ...

  5. CentOS增加硬盘

    1.查看新硬盘     #fdisk –l      新添加的硬盘的编号为/dev/sdb 2.硬盘分区     1)进入fdisk模式     #/sbin/fdisk /dev/sdb     2 ...

  6. Oracle ->> 层级查询语句(hierarchical query)connect by

    Oracle中的Connect By... Start With语句实现了递归查询或者树状查询. Connect By Prior 一方为起始(root)的ID 参考: http://www.360d ...

  7. Intellij IDEA的Hibernate简单应用

    1.创建数据库及其表 create database demo;    use demo; CREATE TABLE `user` (   `id` int(10) unsigned NOT NULL ...

  8. Residual Networks <2015 ICCV, ImageNet 图像分类Top1>

    本文介绍一下2015 ImageNet中分类任务的冠军——MSRA何凯明团队的Residual Networks.实际上,MSRA是今年Imagenet的大赢家,不单在分类任务,MSRA还用resid ...

  9. BZOJ 2173 整数的lqp拆分

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2173 题意:给出输出n.设一种拆分为n=x1+x2+x3,那么这种拆分的价值为F(x1) ...

  10. [POJ1631]Bridging signals (DP,二分优化)

    题目链接:http://poj.org/problem?id=1631 就是求一个LIS,但是范围太大(n≤40000),无法用常规O(n²)的朴素DP算法,这时需要优化. 新加一个数组s[]来维护长 ...