#include <stdio.h>
int main(){
int i,t,j,n,x;
int start,end,temp,max,sum;
scanf("%d",&t);
for(i=;i<t;i++){
temp=;
max=-;
sum=;
scanf("%d",&n);
for(j=;j<n;j++){
scanf("%d",&x);
sum+=x;
if(sum>=max){
max=sum;
start=temp;
end=j+;
}
if(sum<){
sum=;
temp=j+;
}
}
printf("Case %d:\n",i+);
printf("%d %d %d\n",max,start,end);
if(i!=t-){
printf("\n");
}
start=;
end=;
}
return ;
}

格式看代码就行啦。

情况分析:
1、序列全为负数,则找出最大的那个即可。

2、子序列前面(多个)为负数,后面为正数,则start一定在负数之后。

3、子序列后面(多个)为负数,前面为正数,则end一定在负数之前。

4、即所要求的子序列应是:第一个必须0或正数,最后一个必须为0或正数

解题分析:
1、start和end分别记下开始和结束。
2、sum计算自序列的总和,若总和大于最大值,则修改最大值
3、若出现过max,且sum一直在减少,则当sum小于0时,sum清零(此时前面出现过最大的序列,开始和结束已记好),sum是从temp处开始加起的,所以temp要保持和sum一致,即sum小于零时就要修改temp。

HDU 1003 Max Sum(AC代码)的更多相关文章

  1. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...

  2. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  3. hdu 1003 Max Sum (DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)   ...

  4. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. hdu 1003 MAX SUM 简单的dp,测试样例之间输出空行

    测试样例之间输出空行,if(t>0) cout<<endl; 这样出最后一组测试样例之外,其它么每组测试样例之后都会输出一个空行. dp[i]表示以a[i]结尾的最大值,则:dp[i ...

  6. HDU - 1003 Max Sum 【DP】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1003 题意 给出一个序列 要求找出一个和最大的子序列 思路 O(N)的做法 但是要标记 子序列的头部位 ...

  7. HDU 1003 Max Sum

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  8. HDU 1003 Max Sum 解题报告

    题目大意:求一串数字中,几个连续数字加起来最大值,并确定起始和最末的位置. 思路:这是一题DP题,但是可以用尺取法来做.我一开始不会,也是看了某大神的代码,然后有人告诉我这是尺取法,现在会了. //尺 ...

  9. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

随机推荐

  1. replace(),indexOf(),substring(),split(),join(),——各种小知识点

    1.replace ———— 实现去除指定字符串功能,可以用空字符串代替,也可以去新字符代替已有的字符. var str="123_z.jpg"; str=str.replace( ...

  2. ajax简单封装

    var xmlhttp = window.XMLHttpRequest ? new XMLHttpRequest() : new ActiveXObject('Microsoft.XMLHTTP'); ...

  3. mysql 索引长度限制

    MyISAM存储引擎引键的长度综合不能超过1000字节 InnoDB单列索引长度不能超过767bytes,联合索引还有一个限制是3072

  4. ajax使用jquery的实现方式

    1.jquery的ajax方法. $("#ajaxbtn").click(function(){ $.ajax({ url:"json.do", beforeS ...

  5. C#Base64编码

    一. Base64的编码规则 Base64编码的思想是是采用64个基本的ASCII码字符对数据进行重新编码.它将需要编码的数据拆分成字节数组.以3个字节为一组.按顺序排列24 位数据,再把这24位数据 ...

  6. Windows8 10设置程序为 系统默认浏览器

    从win8 开始,MS修改了文件和协议的关联方式,普通的注册表修改是无效的. 必须使用组策略(group policy )对象GP才行. http://blogs.technet.com/b/mrml ...

  7. POJ 3207 2-sat

    题目大意: 在圆上顺时针n个点,给定m个连接,可以通过圆内或者圆外相交,问能不能找到一种方式,使这些连接的边都不相交 这里很容易看出的是,这些边只有在圆外或者圆内两种连接方式,而且必须选择其中一种 所 ...

  8. 【转发】查看Linux版本系统信息方法汇总

    Linux下如何查看版本信息, 包括位数.版本信息以及CPU内核信息.CPU具体型号等等,整个CPU信息一目了然.   1.# uname -a   (Linux查看版本当前操作系统内核信息)   L ...

  9. navtab方法参数以及事件

    参数(options) DOM方式初始化navtab的,推荐使用集合属性data-options定义参数,如果使用data属性定义参数,注意转换成对应的名称. 名称 类型 默认值 描述 id stri ...

  10. 去除hadoop启动时的警告

    hadoop启动的时候,会出现以下警告提示: 执行more start-all.sh查看该文件 但/libexec下不存在hadoop-config.sh文件,所以会执行bin/hadoop-conf ...