Text Style Transfer主要是指Non-Parallel Data条件下的,具体的paper list见: https://github.com/fuzhenxin/Style-Transfer-in-Text

Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer (NAACL 2018)

Transforming a sentence to alter a specific attribute while preserving its attribute-independent content.

Training data includes only sentences labeled with their attribute, but not pairs of sentences that differ only in their attributes

Our strongest method extracts content words by deleting phrases associated with the sentence's original attribute value, retrieves new phrases associated with the target attribute, and use a neural model to fluently combine these into a final output.

Training:

For DELETEONLY:

Reconstruct the sentences in the training corpus given their content and original attribute value by maximizing:

For DELETEANDRETRIEVE: apply some noise to a(x, vsrc) to produce a'(x, vsrc)

这篇文章采用Reconstruct的方法来训练模型生成风格化的描述。

Unsupervised Controllable Text Formalization (AAAI 2019)

The crux of the framework is a deep neural encoder-decoder that is reinforced with text-transformation knowledge through auxiliary modules (called scorers)

Style Transformer: Unpaired Text Style Transfer without Disentangled Latent Representation (ACL 2019)

Transfomer Network

To enable style control in the standard Transformer framework, add an extra style embedding as input to the Transformer encoder

z stands for the representation of the encoded inputs

Discriminator Network

Conditional Discriminator: a sentence x and a proposal style s are feed into discriminator and the discriminator is asked to answer whether the input sentence has the corresponding style.

Multi-class Discriminator: only one sentence is feed into the discriminator, and the discriminator aims to answer the style of this sentence.

Learning Algorithm

Discriminator Learning:

conditional discriminator

multi-class discriminator

Transformer Network Learning:

Self Reconstruction

Cycle Reconstruction

Style Controlling

Text Style Transfer论文笔记的更多相关文章

  1. Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记

    Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记 ECCV 2 ...

  2. 《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》论文笔记

    参考 http://blog.csdn.net/u011534057/article/details/55052304 代码 https://github.com/yusuketomoto/chain ...

  3. 论文笔记之:Generative Adversarial Text to Image Synthesis

    Generative Adversarial Text to Image Synthesis ICML 2016  摘要:本文将文本和图像练习起来,根据文本生成图像,结合 CNN 和 GAN 来有效的 ...

  4. 论文笔记之:Natural Language Object Retrieval

    论文笔记之:Natural Language Object Retrieval 2017-07-10  16:50:43   本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别.大致流程图如下 ...

  5. [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer

    第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...

  6. 神经风格转换Neural Style Transfer a review

    原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...

  7. 【论文笔记系列】AutoML:A Survey of State-of-the-art (下)

    [论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model S ...

  8. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  9. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

随机推荐

  1. 使用哈工大LTP进行文本命名实体识别并保存到txt

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/broccoli2/article/det ...

  2. mysql的执行计划概念说明

    explain中的列的说明 1. id列 id列的编号是 select 的序列号,有几个 select 就有几个id,并且id的顺序是按 select 出现的 顺序增长的. id列越大执行优先级越高, ...

  3. 2019-8-31-C#-通过-probing-指定-dll-寻找文件夹

    title author date CreateTime categories C# 通过 probing 指定 dll 寻找文件夹 lindexi 2019-08-31 16:55:58 +0800 ...

  4. “不是不需要运维工程师,是人人皆是运维”|对话阿里云MVP蒋烁淼(上)

    摘要: 与湖畔大学首期学员.阿里云MVP.驻云创始人蒋烁淼面对面 [三位阿里云MVP(驻云CEO.首席架构师.大数据总监)<MVP时间>首次同台授课,“湖畔第一大脑” 蒋烁淼领头线上精讲, ...

  5. NDK(1)简介

    AndroidNDK Android NDK 是在SDK前面又加上了“原生”二字,即Native Development Kit,因此又被Google称为“NDK”. Android程序运行在Dalv ...

  6. 初始化Redis密码

    在配置文件/etc/redis/redis.conf中有个参数: requirepass 这个就是配置redis访问密码的参数: 比如 requirepass test123: (需重启Redis才能 ...

  7. 读取Excel文件的两种方法比较 以及用NPOI写入Excel

    1. 采用NPOI方式,只需引用NPOI.dll,但目前最高只能到2.4.0版. 缺点:只支持.xls,不支持.xlsx格式.github上的2.4.1版支持.xlsx,但总提示缺ICSharpCod ...

  8. 文字渐变效果:图层中的mask属性

    http://www.cocoachina.com/ios/20150716/12571.html 前言 已经很久没写blog了,最近发生了太多事情,失去了生命中一位很重要的成员,使我不得不放下对技术 ...

  9. oracle函数 MAX([distinct|all]x)

    [功能]统计数据表选中行x列的最大值. [参数]all表示对所有的值求最大值,distinct只对不同的值求最大值,默认为all 如果有参数distinct或all,需有空格与x(列)隔开. [参数] ...

  10. @topcoder - TCO19 Regional Wildcard Wildcard Round - D1L2@ Diophantine

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 令 p[] 为质数序列:p[0] = 2, p[1] = 3, ...