Text Style Transfer论文笔记
Text Style Transfer主要是指Non-Parallel Data条件下的,具体的paper list见: https://github.com/fuzhenxin/Style-Transfer-in-Text
Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer (NAACL 2018)
Transforming a sentence to alter a specific attribute while preserving its attribute-independent content.
Training data includes only sentences labeled with their attribute, but not pairs of sentences that differ only in their attributes
Our strongest method extracts content words by deleting phrases associated with the sentence's original attribute value, retrieves new phrases associated with the target attribute, and use a neural model to fluently combine these into a final output.
Training:
For DELETEONLY:
Reconstruct the sentences in the training corpus given their content and original attribute value by maximizing:

For DELETEANDRETRIEVE: apply some noise to a(x, vsrc) to produce a'(x, vsrc)

这篇文章采用Reconstruct的方法来训练模型生成风格化的描述。
Unsupervised Controllable Text Formalization (AAAI 2019)
The crux of the framework is a deep neural encoder-decoder that is reinforced with text-transformation knowledge through auxiliary modules (called scorers)
Style Transformer: Unpaired Text Style Transfer without Disentangled Latent Representation (ACL 2019)

Transfomer Network
To enable style control in the standard Transformer framework, add an extra style embedding as input to the Transformer encoder

z stands for the representation of the encoded inputs
Discriminator Network
Conditional Discriminator: a sentence x and a proposal style s are feed into discriminator and the discriminator is asked to answer whether the input sentence has the corresponding style.
Multi-class Discriminator: only one sentence is feed into the discriminator, and the discriminator aims to answer the style of this sentence.
Learning Algorithm

Discriminator Learning:
conditional discriminator

multi-class discriminator

Transformer Network Learning:
Self Reconstruction
Cycle Reconstruction
Style Controlling
Text Style Transfer论文笔记的更多相关文章
- Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记
Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记 ECCV 2 ...
- 《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》论文笔记
参考 http://blog.csdn.net/u011534057/article/details/55052304 代码 https://github.com/yusuketomoto/chain ...
- 论文笔记之:Generative Adversarial Text to Image Synthesis
Generative Adversarial Text to Image Synthesis ICML 2016 摘要:本文将文本和图像练习起来,根据文本生成图像,结合 CNN 和 GAN 来有效的 ...
- 论文笔记之:Natural Language Object Retrieval
论文笔记之:Natural Language Object Retrieval 2017-07-10 16:50:43 本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别.大致流程图如下 ...
- [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer
第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...
- 神经风格转换Neural Style Transfer a review
原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...
- 【论文笔记系列】AutoML:A Survey of State-of-the-art (下)
[论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model S ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
随机推荐
- SQLServer —— 用户权限操作
说明 以下操作都是基于SQLServer登陆验证方式登陆.而且操作员都是 sa. 一.添加登陆账号 use master go ' 第一个(xu)是登陆名,第二个(123456)是登陆密码. 执行语句 ...
- 小爬爬4:selenium操作
1.selenium是什么? selenium: - 概念:是一个基于浏览器自动化的模块. - 和爬虫之间的关联? - 帮我我们便捷的爬取到页面中动态加载出来的数据 - 实现模拟登陆 - 基本使用流程 ...
- mariadb配置文件优化参数
mariadb数据库优化需要根据自己业务需求以及根据硬件配置来进行参数优化,下面是一些关于mariadb数据库参数优化的配置文件. 1 如下为128G内存32线程处理器的mariadb配置参数优化: ...
- hdu2897 巴什博奕
n%(q+p)==0,也就是说先手必胜; n%(q+p)<=p,先手必输; n%(q+p)==k if(k>p&&k<=q)先手必胜; if(k>p&& ...
- margin负边距的使用(超简单)
写在开头: 在css的世界中,一切都是框,所有的框都处于流动的状态 margin负边距可以使文档流发生偏移 在没有设置margin-bottom的时候,parent的高度会跟随child的内部元素 ...
- 亿级消息系统的核心存储:Tablestore发布Timeline 2.0模型
背景 互联网快速发展的今天,社交类应用.消息类功能大行其道,占据了大量网络流量.大至钉钉.微信.微博.知乎,小至各类App的推送通知,消息类功能几乎成为所有应用的标配.根据场景特点,我们可以将消息类场 ...
- @游记@ THUWC2019
目录 @day -???@ @day -30~-1@ @day 0@ @day 1@ @day 2@ @day 3@ @day -???@ 我这个蒟蒻居然收到了 THUWC 的邀请? 那就去试试运气吧 ...
- 【codeforces 520A】Pangram
[题目链接]:http://codeforces.com/problemset/problem/520/A [题意] 给你一个字符串. 统计里面有没有出现所有的英文字母->'a'..'z' 每个 ...
- python项目管理
Python 通常没有对应 Java 的 Ant / Maven 这样的 build tool,有一个用于打包的 setuptools / distutils 但也并不完全等价.如果是用来管理依赖包, ...
- HDU3336 Count the string 题解 KMP算法
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3336 题目大意:找出字符串s中和s的前缀相同的所有子串的个数. 题目分析:KMP模板题.这道题考虑 n ...