Text Style Transfer主要是指Non-Parallel Data条件下的,具体的paper list见: https://github.com/fuzhenxin/Style-Transfer-in-Text

Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer (NAACL 2018)

Transforming a sentence to alter a specific attribute while preserving its attribute-independent content.

Training data includes only sentences labeled with their attribute, but not pairs of sentences that differ only in their attributes

Our strongest method extracts content words by deleting phrases associated with the sentence's original attribute value, retrieves new phrases associated with the target attribute, and use a neural model to fluently combine these into a final output.

Training:

For DELETEONLY:

Reconstruct the sentences in the training corpus given their content and original attribute value by maximizing:

For DELETEANDRETRIEVE: apply some noise to a(x, vsrc) to produce a'(x, vsrc)

这篇文章采用Reconstruct的方法来训练模型生成风格化的描述。

Unsupervised Controllable Text Formalization (AAAI 2019)

The crux of the framework is a deep neural encoder-decoder that is reinforced with text-transformation knowledge through auxiliary modules (called scorers)

Style Transformer: Unpaired Text Style Transfer without Disentangled Latent Representation (ACL 2019)

Transfomer Network

To enable style control in the standard Transformer framework, add an extra style embedding as input to the Transformer encoder

z stands for the representation of the encoded inputs

Discriminator Network

Conditional Discriminator: a sentence x and a proposal style s are feed into discriminator and the discriminator is asked to answer whether the input sentence has the corresponding style.

Multi-class Discriminator: only one sentence is feed into the discriminator, and the discriminator aims to answer the style of this sentence.

Learning Algorithm

Discriminator Learning:

conditional discriminator

multi-class discriminator

Transformer Network Learning:

Self Reconstruction

Cycle Reconstruction

Style Controlling

Text Style Transfer论文笔记的更多相关文章

  1. Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记

    Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记 ECCV 2 ...

  2. 《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》论文笔记

    参考 http://blog.csdn.net/u011534057/article/details/55052304 代码 https://github.com/yusuketomoto/chain ...

  3. 论文笔记之:Generative Adversarial Text to Image Synthesis

    Generative Adversarial Text to Image Synthesis ICML 2016  摘要:本文将文本和图像练习起来,根据文本生成图像,结合 CNN 和 GAN 来有效的 ...

  4. 论文笔记之:Natural Language Object Retrieval

    论文笔记之:Natural Language Object Retrieval 2017-07-10  16:50:43   本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别.大致流程图如下 ...

  5. [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer

    第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...

  6. 神经风格转换Neural Style Transfer a review

    原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...

  7. 【论文笔记系列】AutoML:A Survey of State-of-the-art (下)

    [论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model S ...

  8. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  9. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

随机推荐

  1. ubuntu 代理配置

    1.安装Python 2.安装shadowsocks客户端 sudo pip install shadowsocks 3.配置shadowsocks客户端配置 vim /etc/shadowsocks ...

  2. ORA-03113: end-of-file on communication channel 解决方案

    Oracle启动时报如下错误:ORA-03113: end-of-file on communication channel  解决方案如下:1.查看orcle启动日志,确定具体是什么原因引起的错误. ...

  3. 集合 Enumerable Enumerator yield

    集合: 通过索引来访问成员,--引申到索引器 的使用 for foreach循环遍历 --引申到 IEnumerable IEnumerator(会引申到yield) 常用的集合操作,add, ins ...

  4. importError: DLL load failed when import matplotlib.pyplot as plt

    importError: DLL load failed when import matplotlib.pyplot as plt 出现这种情况的原因, 大多是matplotlib的版本与python ...

  5. ArcGIS 发布高程服务。10.4

    ArcGIS 发布高程必须是10.21以上,我用10.4. 前端用ArcGIS For API 4.x. ARCGIS很早之前有CS版本的ArcScene,可查看高程TIF文件,但机制和BS的完全不同 ...

  6. ES6对象的super关键字

    super是es6新出的关键字,它既可以当作函数使用,也可以当作对象使用,两种使用方法不尽相同 1.super用作函数使用的时候,代表父类的构造函数,es6规定在子类中使用this之前必须先执行一次s ...

  7. 洞见数据库前沿 阿里云数据库最强阵容 DTCC 2019 八大亮点抢先看

    摘要: 作为DTCC的老朋友和全球领先的云计算厂商,阿里云数据库团队受邀参加本次技术盛会,不仅将派出重量级嘉宾阵容,还会为广大数据库业内人士和行业用户奉上8场精彩议题.下面小编就为大家提前梳理了8大亮 ...

  8. Laravel 的HTTP请求#

    获取请求# 要通过依赖注入的方式来获取当前HTTP请求的实例,你应该在控制器方法中类型提示Illuminate\Http\Request 传入的请求的实例通过 服务容器自动注入: <?php n ...

  9. Linux 网络原理及基础设置

    临时配置网络(ip,网关,dns)+永久配置 设置IP和掩码 ifconfig eth0 192.168.2.2 netmask 255.255.255.0 设置网关route add default ...

  10. D-query SPOJ - DQUERY 主席树查询区间内不同数出现的次数

    我们不以权值建立主席树,而是区间端点作为值建立线段树,一个个插入a[i],我们发现这个数之前是存在的,就需要在上个版本的主席树上减去原来的位置,并加上现在的位置,这样我们在i版本的主席树,维护1-r中 ...