(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦

Catalog

Problem:

 Portal: hdu4126 hdu4756

 原题目描述在最下面。


第一题:

 给定一张n(3000)个点的图,q次询问,每次询问增大一条边的权值后最小生成树的值是多少,求答案期望。

第二题:

 给定一张n(1000)个点的图,某两个点间的边可能不存在,问各种情况最小生成树的最大值。

Solution:

 第一题用的\(kruskal\),第二题用的\(prim\)。貌似\(prim\)算法效率更高,毕竟都是稠密图。

 先求MST,跑一边树形\(dp\),\(dp\)数组记录任意两个路径间不在MST上的最小边权值。

 然后就枚举边求解咯。

\[new\_mst = mst - w + dp[u][v]
\]

AC_Code:

hdu4126

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <ctime>
#include <cmath>
#include <iostream>
#define lson(x) cw[x].l
#define rson(x) cw[x].r
using namespace std;
typedef long long LL;
typedef pair<int, int> pii; const int MXN = 3e3 + 5;
const int MXE = 1e7 + 5;
const int INF = 0x3f3f3f3f; int n, m, tot;
vector<int> son[MXN];
struct lp{
int u, v;
int w;
}edge[MXE];
int fa[MXN], rnk[MXN];
int dis1[MXN][MXN], is[MXN][MXN], ar[MXN][MXN];
void init() {
memset(dis1, 0x3f, sizeof(dis1));
memset(is, 0, sizeof(is));
memset(ar, 0x3f, sizeof(ar));
for(int i = 1; i <= n; ++i) {
fa[i] = i;
rnk[i] = 1;
son[i].clear();
ar[i][i] = dis1[i][i] = 0;
}
}
bool cmp(const lp &a, const lp &b) {
return a.w < b.w;
}
int Fi(int x) {
return fa[x] == x? x: fa[x] = Fi(fa[x]);
}
LL kruskal(int k) {
int CNT = 0;
LL ans = 0;
for(int i = 0; i < k; ++i) {
int x = Fi(edge[i].u), y = Fi(edge[i].v);
if(x == y) continue;
if(rnk[x] > rnk[y]) swap(x, y);
fa[x] = y;
rnk[y] += rnk[x];
++ CNT;
ans += edge[i].w;
son[edge[i].u].push_back(edge[i].v);
son[edge[i].v].push_back(edge[i].u);
is[edge[i].u][edge[i].v] = is[edge[i].v][edge[i].u] = 1;
if(CNT == n-1) break;
}
return ans;
}
int dfs(int u,int ba,int r) {
int len = son[u].size(), mi = INF;
for(int i = 0; i < len; ++i) {
int v = son[u][i];
if(v == ba) continue;
int tmp = dfs(v, u, r);
mi = min(mi, tmp);
dis1[u][v] = dis1[v][u] = min(dis1[v][u], tmp);
}
if(r != ba) mi = min(mi, ar[r][u]);
return mi;
}
void solve() {
init();
for(int i = 0; i < m; ++i) {
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
edge[i].u ++; edge[i].v ++;
ar[edge[i].u][edge[i].v] = ar[edge[i].v][edge[i].u] = edge[i].w;
}
sort(edge, edge + m, cmp);
int ans = kruskal(m), q;
for(int i = 1; i <= n; ++i) dfs(i, -1, i);
LL sum = 0, tmp;
scanf("%d", &q);
for(int i = 0, u, v, w; i < q; ++i) {
scanf("%d%d%d", &u, &v, &w);
u++; v++;
if(is[u][v]) {
tmp = ans - ar[u][v] + min(dis1[u][v], w);
}else {
tmp = ans;
}
sum += tmp;
}
printf("%.4f\n", sum*1.0/q);
}
int main(int argc, char const *argv[]){
while(~scanf("%d%d", &n, &m)&&(n + m)) solve();
return 0;
}

hdu4756

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <ctime>
#include <cmath>
#include <iostream>
#define lson(x) cw[x].l
#define rson(x) cw[x].r
using namespace std;
typedef long long LL;
typedef pair<int, int> pii; const int MXN = 1e3 + 5;
const int MXE = 1e7 + 5;
const int INF = 0x3f3f3f3f; int n;
double m;
vector<int> son[MXN];
int is[MXN][MXN];
double ar[MXN][MXN], dis1[MXN][MXN], dis[MXN];
int pre[MXN], vis[MXN];
LL x[MXN], y[MXN];
void init() {
memset(is, 0, sizeof(is));
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= n; ++j) ar[i][j] = dis1[i][j] = INF;
son[i].clear();
ar[i][i] = dis1[i][i] = 0;
}
}
double prim() {
double sum = 0;
for(int i = 1; i <= n; ++i) {
dis[i] = ar[1][i];
vis[i] = 1;
pre[i] = 1;
}
vis[1] = -1;
for(int J = 1; J < n; ++J) {
int p = -1;
double mm = INF;
for(int i = 1; i <= n; ++i) {
if(vis[i] != -1 && dis[i] < mm) {
p = i; mm = dis[i];
}
}
if(p == -1) break;
sum += mm;
son[p].push_back(vis[p]);
son[vis[p]].push_back(p);
is[p][vis[p]] = is[vis[p]][p] = 1;
vis[p] = -1;
for(int i = 1; i <= n; ++i) {
if(ar[p][i] < dis[i] && vis[i] != -1) {
dis[i] = ar[p][i];
vis[i] = p;
}
}
}
return sum;
}
double dfs(int u,int ba,int r) {
int len = son[u].size();
double mi = INF;
for(int i = 0; i < len; ++i) {
int v = son[u][i];
if(v == ba) continue;
double tmp = dfs(v, u, r);
mi = min(mi, tmp);
dis1[u][v] = dis1[v][u] = min(dis1[v][u], tmp);
}
if(r != ba) mi = min(mi, ar[r][u]);
return mi;
}
LL two(LL x) {
return x * x;
}
void solve() {
scanf("%d%lf", &n, &m);
init();
for(int i = 1; i <= n; ++i) {
scanf("%lld%lld", &x[i], &y[i]);
}
for(int i = 1; i < n; ++i) {
for(int j = i + 1; j <= n; ++j) {
ar[i][j] = ar[j][i] = sqrt(two(x[i]-x[j])*1.0+two(y[i]-y[j]));
}
}
double tmp = prim(), ans = tmp;
//printf("MST = %.2f\n", tmp);
for(int i = 1; i <= n; ++i) dfs(i, -1, i);
for(int i = 2; i < n; ++i) {
for(int j = i + 1; j <= n; ++j) {
if(is[i][j])ans = max(tmp - ar[i][j] + dis1[i][j], ans);
}
}
if(ans >= INF) printf("%.2f\n", tmp * m);
else printf("%.2f\n", ans * m);
}
int main(int argc, char const *argv[]){
int tim;scanf("%d", &tim);
while(tim--) solve();
return 0;
}

Problem Description:

一:

Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each city can send and receive messages safely and promptly through those roads.

There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and the total cost was minimal.

Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information.

Input

There are no more than 20 test cases in the input.

For each test case, the first line contains two integers N and M (1<=N<=3000, 0<=M<=N×N), demonstrating the number of cities and roads in Pushtuar. Cities are numbered from 0 to N-1. In the each of the following M lines, there are three integers xi, yi and ci(ci<=107), showing that there is a bidirectional road between xi and yi, while the cost of setting up guarders on this road is ci. We guarantee that the graph is connected. The total cost of the graph is less or equal to 109.

The next line contains an integer Q (1<=Q<=10000) representing the number of suspicious road cost changes. In the following Q lines, each line contains three integers Xi, Yi and Ci showing that the cost of road (Xi, Yi) may change to Ci (Ci<=107). We guarantee that the road always exists and Ci is larger than the original cost (we guarantee that there is at most one road connecting two cities directly). Please note that the probability of each suspicious road cost change is the same.

Output

For each test case, output a real number demonstrating the expected minimal total cost. The result should be rounded to 4 digits after decimal point.

Sample Input

3 3
0 1 3
0 2 2
1 2 5
3
0 2 3
1 2 6
0 1 6
0 0

Sample Output

6.0000

Hint
The initial minimal cost is 5 by connecting city 0 to 1 and city 0 to 2. In the first suspicious case, the minimal total cost is increased to 6;
the second case remains 5; the third case is increased to 7. As the result, the expected cost is (5+6+7)/3 = 6.

二:

As we all know, Nanjing is one of the four hottest cities in China. Students in NJUST find it hard to fall asleep during hot summer every year. They will never, however, suffer from that hot this year, which makes them really excited. NJUST’s 60th birthday is approaching, in the meantime, 50 million is spent to install air conditioning among students dormitories. Due to NJUST’s long history, the old circuits are not capable to carry heavy load, so it is necessary to set new high-load wires. To reduce cost, every wire between two dormitory is considered a segment. Now, known about all the location of dormitories and a power plant, and the cost of high-load wire per meter, Tom200 wants to know in advance, under the premise of all dormitories being able to supply electricity, the minimum cost be spent on high-load wires. And this is the minimum strategy. But Tom200 is informed that there are so many wires between two specific dormitories that we cannot set a new high-load wire between these two, otherwise it may have potential risks. The problem is that Tom200 doesn’t know exactly which two dormitories until the setting process is started. So according to the minimum strategy described above, how much cost at most you'll spend?

Input

The first line of the input contains a single integer T(T ≤ 100), the number of test cases.

For each case, the first line contains two integers n(3 ≤ n ≤ 1000), k(1 ≤ k ≤ 100). n represents n-1 dormitories and one power plant, k represents the cost of high-load wire per meter. n lines followed contains two integers x, y(0 ≤ x, y ≤ 10000000), representing the location of dormitory or power plant. Assume no two locations are the same, and no three locations are on a straight line. The first one is always the location of the power plant.

Output

For each case, output the cost, correct to two decimal places.

Sample Input

2

4 2
0 0
1 1
2 0
3 1 4 3
0 0
1 1
1 0
0 1

Sample Output

9.66
9.00

hdu4126_hdu4756_求最小生成树的最佳替换边_Kruskal and Prim的更多相关文章

  1. 全连通图求最小生成树边权之积(邻接矩阵/prim/kruskal)

    Description 大家都知道最小生成树一般求的是构成最小生成树的边的权值之和. 现在请求构成最小生成树的边的权值之积 S,最终结果请输出 (S % 100003). P.S. 点之间的边为无向边 ...

  2. Prim算法和Kruskal算法求最小生成树

    Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...

  3. (poj)1679 The Unique MST 求最小生成树是否唯一 (求次小生成树与最小生成树是否一样)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  4. HDU-1233 还是畅通工程 (prim 算法求最小生成树)

    prim 算法求最小生成树 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  5. prime算法求最小生成树(畅通工程再续)

    连着做了四道畅通工程的题,其实都是一个套路,转化为可以求最小生成树的形式求最小生成树即可 这道题需要注意: 1:因为满足路的长度在10到1000之间才能建路,所以不满足条件的路径长度可以初始化为无穷 ...

  6. Kruskal和Prim算法求最小生成树

    Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...

  7. Kruskal求最小生成树

    #include<bits/stdc++.h> using namespace std; ; ; const int inf = 0x3f3f3f3f; ; typedef long lo ...

  8. poj 2349 求最小生成树里面第m长的边

    题目链接:https://vjudge.net/problem/POJ-2349 题意: 题目就是要我们找到一个最小的值D,把图里面所有大于D的边去掉之后剩余的连通分支的数量为S.这个就是找这个图里面 ...

  9. hdu 3405 删掉某点后 求最小生成树

    给出N个点的坐标 边的权值为两点间的距离 删掉其中某点 求最小生成树的权值和 要求这权值最小 因为最多50个点 所以具体是删哪个点 用枚举假如有4个点 就要求4次最小生成树 分别是2 3 4 | 1 ...

随机推荐

  1. 【leetcode】969. Pancake Sorting

    题目如下: Given an array A, we can perform a pancake flip: We choose some positive integer k <= A.len ...

  2. sql 性能优化 索引碎片

    1.索引 简单的说,索引就像书本的目录,目录可以快速找到所在页数,数据库中索引可以帮助快速找到数据,而不用全表扫描,合适的索引可以大大提高数据库查询的效率.(1). 优点大大加快了数据库检索的速度,包 ...

  3. 【架构】spring framework核心框架体系结构

    Spring官方文档,用的版本为4.3.11版本. 一.引用官方文档 2.2.1核心集装箱 所述核心容器由以下部分组成spring-core, spring-beans,spring-context, ...

  4. sql 修改数据

    关系数据库的基本操作就是增删改查,即CRUD:Create.Retrieve.Update.Delete.其中,对于查询,我们已经详细讲述了SELECT语句的详细用法. 而对于增.删.改,对应的SQL ...

  5. onethink后台代码简单分析(1)

    onethink后台的入口页面同样是Index/index控制器 首先,Index继承了AdminController,AdminController有一个_initialize函数,这是所有后台运行 ...

  6. 在使用element-ui搭建的表格中,实现点击"定位"按钮后,屏幕滚动到对应行的位置

    背景: 一个后台管理系统,当管理员登录之后,会存在一个自己的id值, 在一个表格中,当点击"定位"按钮后,屏幕滚动到拥有管理员id的这一行,并且给设置一个高亮的背景 相关知识点: ...

  7. <iframe>框架标签的使用

    同源下 1.iframe属性设置参考:https://blog.csdn.net/xiyiyindie/article/details/53415158 2.父子页面之间元素相互操作:https:// ...

  8. JZOI1142 排队布局

    #include <bits/stdc++.h> using namespace std; inline int read() { int x = 0,tmp = 1;char ch = ...

  9. C++之宏定义实现两个数最值

    转自:https://blog.csdn.net/baidu_33725271/article/details/69478782 方法一: 利用三重条件运算符 #include <stdio.h ...

  10. 网页压缩--gzip和deflate的区别

    我们在配置网站GZip压缩的时候,会发现有两个模块可以设置的,一个是GZip模块的参数配置,另一个是Deflate模块的参数配置,他们的设置方法是一样的.刚开始时我不太明白,这两地方有什么不同?网站开 ...