特征抽取sklearn.feature_extraction 模块提供了从原始数据如文本,图像等众抽取能够被机器学习算法直接处理的特征向量。

1.特征抽取方法之 Loading Features from Dicts

measurements=[
{'city':'Dubai','temperature':33.},
{'city':'London','temperature':12.},
{'city':'San Fransisco','temperature':18.},
] from sklearn.feature_extraction import DictVectorizer
vec=DictVectorizer()
print(vec.fit_transform(measurements).toarray())
print(vec.get_feature_names()) #[[ 1. 0. 0. 33.]
#[ 0. 1. 0. 12.]
#[ 0. 0. 1. 18.]] #['city=Dubai', 'city=London', 'city=San Fransisco', 'temperature']

2.特征抽取方法之 Features hashing

3.特征抽取方法之 Text Feature Extraction

词袋模型 the bag of words represenatation

#词袋模型
from sklearn.feature_extraction.text import CountVectorizer
#查看默认的参数
vectorizer=CountVectorizer(min_df=1)
print(vectorizer) """
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
tokenizer=None, vocabulary=None) """ corpus=["this is the first document.",
"this is the second second document.",
"and the third one.",
"Is this the first document?"]
x=vectorizer.fit_transform(corpus)
print(x) """
(0, 1) 1
(0, 2) 1
(0, 6) 1
(0, 3) 1
(0, 8) 1
(1, 5) 2
(1, 1) 1
(1, 6) 1
(1, 3) 1
(1, 8) 1
(2, 4) 1
(2, 7) 1
(2, 0) 1
(2, 6) 1
(3, 1) 1
(3, 2) 1
(3, 6) 1
(3, 3) 1
(3, 8) 1
"""

默认是可以识别的字符串至少为2个字符

analyze=vectorizer.build_analyzer()
print(analyze("this is a document to anzlyze.")==
    (["this","is","document","to","anzlyze"])) #True

在fit阶段被analyser发现的每一个词语都会被分配一个独特的整形索引,该索引对应于特征向量矩阵中的一列

print(vectorizer.get_feature_names()==(
["and","document","first","is","one","second","the","third","this"]
))
#True
print(x.toarray())
"""
[[0 1 1 1 0 0 1 0 1]
[0 1 0 1 0 2 1 0 1]
[1 0 0 0 1 0 1 1 0]
[0 1 1 1 0 0 1 0 1]]
"""

获取属性

print(vectorizer.vocabulary_.get('document'))
#1

对于一些没有出现过的字或者字符,则会显示为0

vectorizer.transform(["somthing completely new."]).toarray()
"""
[[0 1 1 1 0 0 1 0 1]
[0 1 0 1 0 2 1 0 1]
[1 0 0 0 1 0 1 1 0]
[0 1 1 1 0 0 1 0 1]]
"""

在上边的语料库中,第一个和最后一个单词是一模一样的,只是顺序不一样,他们会被编码成相同的特征向量,所以词袋表示法会丢失了单词顺序的前后相关性信息,为了保持某些局部的顺序性,可以抽取2个词和一个词

bigram_vectorizer=CountVectorizer(ngram_range=(1,2),token_pattern=r"\b\w+\b",min_df=1)
analyze=bigram_vectorizer.build_analyzer()
print(analyze("Bi-grams are cool!")==(['Bi','grams','are','cool','Bi grams',
'grams are','are cool'])) #True
x_2=bigram_vectorizer.fit_transform(corpus).toarray()
print(x_2) """
[[0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0]
[0 0 1 0 0 1 1 0 0 2 1 1 1 0 1 0 0 0 1 1 0]
[1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0]
[0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1]]
"""

sklearn中模型抽取的更多相关文章

  1. sklearn 中模型保存的两种方法

    一. sklearn中提供了高效的模型持久化模块joblib,将模型保存至硬盘. from sklearn.externals import joblib #lr是一个LogisticRegressi ...

  2. sklearn中模型评估和预测

    一.模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.c ...

  3. sklearn保存模型的两种方式

    sklearn 中模型保存的两种方法   一. sklearn中提供了高效的模型持久化模块joblib,将模型保存至硬盘. from sklearn.externals import joblib # ...

  4. 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示

    第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...

  5. sklearn中的模型评估-构建评估函数

    1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scor ...

  6. sklearn中的KMeans算法

    1.聚类算法又叫做“无监督分类”,其目的是将数据划分成有意义或有用的组(或簇).这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布. 2.KMeans算法将一 ...

  7. 机器学习实战基础(二十四):sklearn中的降维算法PCA和SVD(五) PCA与SVD 之 重要接口inverse_transform

    重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵 ...

  8. Python 3 利用 Dlib 19.7 和 sklearn机器学习模型 实现人脸微笑检测

    0.引言  利用机器学习的方法训练微笑检测模型,给一张人脸照片,判断是否微笑:   使用的数据集中69张没笑脸,65张有笑脸,训练结果识别精度在95%附近: 效果: 图1 示例效果 工程利用pytho ...

  9. sklearn中的Pipeline

    在将sklearn中的模型持久化时,使用sklearn.pipeline.Pipeline(steps, memory=None)将各个步骤串联起来可以很方便地保存模型. 例如,首先对数据进行了PCA ...

随机推荐

  1. 其它课程中的python---6、python读取数据

    其它课程中的python---6.python读取数据 一.总结 一句话总结: 记常用和特例:慢慢慢慢的就熟了,不用太着急,慢慢来 库的使用都很简单:就是库的常用函数就这几个,后面用的时候学都来得及. ...

  2. Shell基本正则表达式和扩展正则表达式

    BRE和ERE的区别 基本正则表达式(BRE)和扩展正则表达式(ERE)的区别仅仅是元字符(meta charactor)的区别而已. BRE: 只有^$.*[]是元字符 ERE: ^$.[]*+() ...

  3. Java学习之classpath

    要运行class文件,必须在class文件所在的目录下,那么是不是也可以通过设置系统变量来配置呢,当然有了classpath就来了 环境变量配置有两种 1.一劳永逸的 2.set 临时变量 我们用临时 ...

  4. 软件测试工程师如何提高提BUG逼格

    某个周四早上,沏好一杯茶,刚要坐到座位上,就听开发说,你们测试怎么提的Bug,给个截图能说明啥?截图上面显示的奔溃,如果是必现还好,如果不是必现,那么我们怎么去定位?至少给个日志吧?当时我的内心活动是 ...

  5. webpack中代理配置(proxyTable)

    注:用axios请求 1,下载axios npm i axios --save 2,在config文件下的index.js中配置代理地址 参考:https://vuejs-templates.gith ...

  6. String、StringBuffer、StringBuilder有什么区别?

    1.在字符串不经常发生变化的业务场景优先使用String(代码更清晰简洁).如常量的声明,少量的字符串操作(拼接,删除等). 2.在单线程情况下,如有大量的字符串操作情况,应该使用StringBuil ...

  7. JavaFX开发环境安装配置

    JavaFX开发环境安装配置 从Java8开始,JDK(Java开发工具包)包括了JavaFX库. 因此,要运行JavaFX应用程序,您只需要在系统中安装Java8或更高版本. 除此之外,IDE(如E ...

  8. SOA(面向服务的体系结构)

    SOA(面向服务的体系结构) 面向服务的体系结构是一个组件模型,它将应用程序的不同功能单元(称为服务)通过这些服务之间定义良好的接口和契约联系起来.接口是采用中立的方式进行定义的,它应该独立于实现服务 ...

  9. wordpress 上传图片时提示“无法建立目录wp-content/uploads/2019/03。有没有上级目录的写权限?”

    查一下网站目录下wp-content目录的权限, # ls -l drwxr-xr-x  5 nobody 65534  4096 Feb  3  2016 wp-content 修改wp-conte ...

  10. 新建pc端页面的模板

    pc端页面,要做兼容.新建pc端模板时,先要初始化浏览器的样式,我命名为reset.css @charset "utf-8"; /* 取消链接高亮 */ body,div,ul,l ...