摘要: RocketMQ源码分析之从官方示例窥探RocketMQ事务消息实现基本思想。

在阅读本文前,若您对RocketMQ技术感兴趣,请加入RocketMQ技术交流群


RocketMQ4.3.0版本开始支持事务消息,后续分享将开始将剖析事务消息的实现原理。首先从官方给出的Demo实例入手,以此通往RocketMQ事务消息的世界中。

官方版本未发布之前,从apache rocketmq第一个版本上线后,代码中存在与事务消息相关的代码,例如COMMIT、ROLLBACK、PREPARED,在事务消息未开源之前网上对于事务消息的“声音”基本上是使用类似二阶段提交,主要是根据消息系统标志MessageSysFlag中定义来推测的:

  • TRANSACTION_PREPARED_TYPE
  • TRANSACTION_COMMIT_TYPE
  • TRANSACTION_ROLLBACK_TYPE

消息发送者首先发送TRANSACTION_PREPARED_TYPE类型的消息,然后根据事务状态来决定是提交或回滚事务发送commit请求或rollback请求,如果commit/rollback请求丢失后,rocketmq会在指定超时时间后回查事务状态来决定提交或回滚事务。

让我们各自带着自己的理解和猜测,从阅读RocketMQ官方提供的Demo程序入手,试图窥探一些大体的信息。

Demo示例程序位于:/rocketmq-example/src/main/java/org/apache/rocketmq/example/transaction包中。该包中未放置消息消费者,为了验证事务的消息消费情况,我们可以从其他包copy一个消费者,从而先运行生产者,然后运行消费者,判断事务消息的预发放、提交、回滚等效果,二话不说,先运行一下,看下效果再说:
消息发送端运行结果:

SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5767EC0000, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=1], queueOffset=0]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D57680F0001, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=2], queueOffset=1]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D57681E0002, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=3], queueOffset=2]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D57682B0003, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=0], queueOffset=3]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768380004, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=1], queueOffset=4]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768490005, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=2], queueOffset=5]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768560006, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=3], queueOffset=6]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768640007, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=0], queueOffset=7]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768730008, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=1], queueOffset=8]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768800009, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=2], queueOffset=9]

消息消费端效果:

Consumer Started.
ConsumeMessageThread_1 Receive New Messages: [MessageExt [queueId=0, storeSize=325, queueOffset=0, sysFlag=8, bornTimestamp=1532745715812, bornHost=/192.168.1.5:55482, storeTimestamp=1532745749010, storeHost=/192.168.1.5:10911, msgId=C0A8010500002A9F0000000000001DE8, commitLogOffset=7656, bodyCRC=988340972, reconsumeTimes=0, preparedTransactionOffset=5477, toString()=Message{topic='transaction_topic_test', flag=0, properties={MIN_OFFSET=0, REAL_TOPIC=transaction_topic_test, TRANSACTION_CHECK_TIMES=1, MAX_OFFSET=1, KEYS=KEY7, TRAN_MSG=true, CONSUME_START_TIME=1532746024360, UNIQ_KEY=C0A8010518DC6D06D69C8D5768640007, WAIT=true, PGROUP=please_rename_unique_group_name, TAGS=TagC, REAL_QID=0}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 101, 116, 77, 81, 32, 55], transactionId='C0A8010518DC6D06D69C8D5768640007'}]]
ConsumeMessageThread_2 Receive New Messages: [MessageExt [queueId=1, storeSize=325, queueOffset=0, sysFlag=8, bornTimestamp=1532745715768, bornHost=/192.168.1.5:55482, storeTimestamp=1532745749008, storeHost=/192.168.1.5:10911, msgId=C0A8010500002A9F0000000000001B91, commitLogOffset=7057, bodyCRC=601994070, reconsumeTimes=0, preparedTransactionOffset=4496, toString()=Message{topic='transaction_topic_test', flag=0, properties={MIN_OFFSET=0, REAL_TOPIC=transaction_topic_test, TRANSACTION_CHECK_TIMES=1, MAX_OFFSET=1, KEYS=KEY4, TRAN_MSG=true, CONSUME_START_TIME=1532746024361, UNIQ_KEY=C0A8010518DC6D06D69C8D5768380004, WAIT=true, PGROUP=please_rename_unique_group_name, TAGS=TagE, REAL_QID=1}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 101, 116, 77, 81, 32, 52], transactionId='C0A8010518DC6D06D69C8D5768380004'}]]
ConsumeMessageThread_3 Receive New Messages: [MessageExt [queueId=2, storeSize=325, queueOffset=0, sysFlag=8, bornTimestamp=1532745715727, bornHost=/192.168.1.5:55482, storeTimestamp=1532745748834, storeHost=/192.168.1.5:10911, msgId=C0A8010500002A9F000000000000193A, commitLogOffset=6458, bodyCRC=1401636825, reconsumeTimes=0, preparedTransactionOffset=3515, toString()=Message{topic='transaction_topic_test', flag=0, properties={MIN_OFFSET=0, REAL_TOPIC=transaction_topic_test, TRANSACTION_CHECK_TIMES=1, MAX_OFFSET=1, KEYS=KEY1, TRAN_MSG=true, CONSUME_START_TIME=1532746024368, UNIQ_KEY=C0A8010518DC6D06D69C8D57680F0001, WAIT=true, PGROUP=please_rename_unique_group_name, TAGS=TagB, REAL_QID=2}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 101, 116, 77, 81, 32, 49], transactionId='C0A8010518DC6D06D69C8D57680F0001'}]]

综上所述,服务端发送了10条消息,而消费端只收到3条消息,应该是由于事务回滚,造成只提交了3条消息,为了更加严谨,可以安装一个rocketmq-consonse,更加直观的观察shangshagn's上述结果:

接下来对示例代码进行解读:

1、生产者端代码解读:

public class TransactionProducer {
public static void main(String[] args) throws MQClientException, InterruptedException {
TransactionListener transactionListener = new TransactionListenerImpl(); // @1
TransactionMQProducer producer = new TransactionMQProducer("please_rename_unique_group_name");
producer.setNamesrvAddr("127.0.0.1:9876");
ExecutorService executorService = new ThreadPoolExecutor(2, 5, 100, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(2000), new ThreadFactory() {
@Override
public Thread newThread(Runnable r) {
Thread thread = new Thread(r);
thread.setName("client-transaction-msg-check-thread");
return thread;
}
}); // @2
producer.setExecutorService(executorService); // @3
producer.setTransactionListener(transactionListener); // @4
producer.start();
String[] tags = new String[] {"TagA", "TagB", "TagC", "TagD", "TagE"};
for (int i = 0; i < 10; i++) { // @5
try {
Message msg =
new Message("transaction_topic_test", tags[i % tags.length], "KEY" + i,
("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.sendMessageInTransaction(msg, null);
System.out.printf("%s%n", sendResult); Thread.sleep(10);
} catch (MQClientException | UnsupportedEncodingException e) {
e.printStackTrace();
}
}
for (int i = 0; i < 100000; i++) { //这里只是阻止生产者过早退出,导致事务消息的相关机制无法运行
Thread.sleep(1000);
}
producer.shutdown();
}
}

代码@1:创建TransactionListener 实例,字面理解为事务消息事件监听器,下文详细对其进行展开。
代码@2:ExecutorService executorService,创建一个线程池,其线程的名称前缀”client-transaction-msg-check-thread“,从字面理解为客户端事务消息状态检测线程,我们可以大胆的猜测一下是不是这个线程池调用TransactionListener方法,完成对事务消息的检测呢?【这里只是作者的猜测,大家不能当真,在作者后续文章发布后,如果该观点错误,会加以修复,这里写出来,主要是想分享一下我读源码的方法】。
代码@3:为事务消息发送者设置线程池。
代码@4:为事务消息发送者设置事务监听器。
代码@5:发送10条消息。

2、TransactionListener代码解读

public class TransactionListenerImpl implements TransactionListener {
private AtomicInteger transactionIndex = new AtomicInteger(0); private ConcurrentHashMap<String, Integer> localTrans = new ConcurrentHashMap<>(); @Override
public LocalTransactionState executeLocalTransaction(Message msg, Object arg) {
int value = transactionIndex.getAndIncrement();
int status = value % 3;
localTrans.put(msg.getTransactionId(), status);
return LocalTransactionState.UNKNOW;
} @Override
public LocalTransactionState checkLocalTransaction(MessageExt msg) {
Integer status = localTrans.get(msg.getTransactionId());
if (null != status) {
switch (status) {
case 0:
return LocalTransactionState.UNKNOW;
case 1:
return LocalTransactionState.COMMIT_MESSAGE;
case 2:
return LocalTransactionState.ROLLBACK_MESSAGE;
}
}
return LocalTransactionState.COMMIT_MESSAGE;
}
}
  1. executeLocalTransaction方法:记录本地事务的事务状态,这里其实现就是循环设置事务消息的状态为0,1,2,demo中是把消息的状态数据存放在一个Map中。实际应用时通常会持久化消息的事务状态,例如数据库或缓存。
  2. checkLocalTransaction方法,事务回查业务实现,查本地事务表,判断事务的状态如为0:UNKNOW,1:COMMIT_MESSAGE;ROLLBACK_MESSAGE。这里就能解释,生产者连续发10条消息,因为只有3条消息的事务状态为COMMIT_MESSAGE,故消息消费者只能消费3条。

到这里,基本上还是可以得知事务消息的实现方式,基本与文章开头所示的“网上声音”实现类似,下一节将详细分析TransactionMQProducer事务消息发送的实现细节。

郑重声明:本文主要是展示事务消息的基本使用,本文所下的结论还仅仅是作者的猜测,下一篇文章,将重点分析事务消息的实现细节,本文一个非常重要的目的,是向读者朋友们展示作者学习源码的一个方法,总结为:先做全面了解(网上,官方文档)、然后加以自己的思考,从Demo实例入手学习,将学习任务分解之,边写边看。

这算不算文末有彩蛋呢?呵呵,下一篇见:详细分析RocketMQ事务消息的实现细节。

本文节选自书籍《RocketMQ技术内幕:RocketMQ架构设计与实现原理》

RocketMQ源码分析之从官方示例窥探:RocketMQ事务消息实现基本思想的更多相关文章

  1. RocketMQ 源码分析 —— Message 发送与接收

    1.概述 Producer 发送消息.主要是同步发送消息源码,涉及到 异步/Oneway发送消息,事务消息会跳过. Broker 接收消息.(存储消息在<RocketMQ 源码分析 —— Mes ...

  2. 【RocketMQ源码分析】深入消息存储(3)

    前文回顾 CommitLog篇 --[RocketMQ源码分析]深入消息存储(1) ConsumeQueue篇 --[RocketMQ源码分析]深入消息存储(2) 前面两篇已经说过了消息如何存储到Co ...

  3. 【RocketMQ源码分析】深入消息存储(2)

    前文回顾 CommitLog篇 --[RocketMQ源码分析]深入消息存储(1) MappedFile篇 --[RocketMQ源码分析]深入消息存储(3) 前文说完了一条消息如何被持久化到本地磁盘 ...

  4. [源码分析]并行分布式任务队列 Celery 之 子进程处理消息

    [源码分析]并行分布式任务队列 Celery 之 子进程处理消息 0x00 摘要 Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度.在前 ...

  5. 【RocketMQ源码分析】深入消息存储(1)

    最近在学习RocketMQ相关的东西,在学习之余沉淀几篇笔记. RocketMQ有很多值得关注的设计点,消息发送.消息消费.路由中心NameServer.消息过滤.消息存储.主从同步.事务消息等等. ...

  6. RocketMQ源码分析之RocketMQ事务消息实现原理上篇(二阶段提交)

    在阅读本文前,若您对RocketMQ技术感兴趣,请加入 RocketMQ技术交流群 根据上文的描述,发送事务消息的入口为: TransactionMQProducer#sendMessageInTra ...

  7. Hadoop2源码分析-YARN RPC 示例介绍

    1.概述 之前在<Hadoop2源码分析-RPC探索实战>一文当中介绍了Hadoop的RPC机制,今天给大家分享关于YARN的RPC的机制.下面是今天的分享目录: YARN的RPC介绍 Y ...

  8. ROCKETMQ源码分析笔记1:tools

    rocketmq源码解析笔记 大家好,先安利一下自己,本人男,35岁,已婚.目前就职于小资生活(北京),职位是开发总监. 姓名DaneBrown 好了.我保证本文绝不会太监!转载时请附上以上安利信息. ...

  9. ROCKETMQ源码分析笔记2:client

    CLIENT 之前讲过tools里面有大量调用client的东西.为了从源码层面了解rocket,决定啃下client这块骨头. pom 先看pom,看看CLIENT依赖谁.看完后原来是依赖commo ...

随机推荐

  1. Samza基本概念

  2. 标准 IO fgets与fputs 对文件的操作

    char *fgets(char *s, int size, FILE *stream); int fputs(const char *s, FILE *stream);   使用fgets从流中读取 ...

  3. redis设置自动启动

    按照如下操作即可(可以自定义目录) mkdir /redis cd /redis wget http://download.redis.io/releases/redis-4.0.1.tar.gz t ...

  4. Dart编程数字Number

    Dart数字可以分为: int - 任意大小的整数. int 数据类型用于表示整数. double -64位(双精度)浮点数,由IEEE 754标准规定. 在 double 数据类型用于表示小数 in ...

  5. R语言 数据类型

    R语言数据类型 通常,在使用任何编程语言进行编程时,您需要使用各种变量来存储各种信息. 变量只是保留值的存储位置. 这意味着,当你创建一个变量,你必须在内存中保留一些空间来存储它们. 您可能想存储各种 ...

  6. MaxCompute问答整理之9月

    本文是基于本人对MaxCompute产品的学习进度,再结合开发者社区里面的一些问题,进而整理成文.希望对大家有所帮助. 问题一.如何查看information_schema的tables? 在使用OD ...

  7. 60 cuda全局性能优化

    0 引言 cuda线程模型涉及grid的块划分和线程配置,直接影响到全局运算速度.根据文档<CUDA_C_Programming_Guide>,性能优化有三个方面的基本策略. (1)最大化 ...

  8. NX二次开发-设置经典工具栏的可见性UF_UI_set_toolbar_vis

    NX9+VS2012 1.打开D:\Program Files\Siemens\NX 9.0\UGII\menus\ug_main.men 找到装配和PMI,在中间加上一段 TOGGLE_BUTTON ...

  9. sqlserver中常用的windows命令行的操作

    1.删除指定目录下指定时间之前的文件: ), ), @sqltxtdel varchar(max) --指定的删除时间 set @deldate= '-8' --指定的删除路径 set @bakpat ...

  10. python爬虫_从零开始破解js加密(一)

    除了一些类似字体反爬之类的奇淫技巧,js加密应该是反爬相当常见的一部分了,这也是一个分水岭,我能解决基本js加密的才能算入阶. 最近正好遇到一个比较简单的js,跟大家分享一下迅雷网盘搜索_838888 ...