随机抽样 (numpy.random)
随机抽样 (numpy.random)
简单的随机数据
rand(d0, d1, ..., dn) |
随机值 >>> np.random.rand(3,2) |
randn(d0, d1, ..., dn) |
返回一个样本,具有标准正态分布。 Notes For random samples from sigma * np.random.randn(...) + mu Examples >>> np.random.randn() Two-by-four array of samples from N(3, 6.25): >>> 2.5 * np.random.randn(2, 4) + 3 |
randint(low[, high, size]) |
返回随机的整数,位于半开区间 [low, high)。 >>> np.random.randint(2, size=10) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> np.random.randint(5, size=(2, 4)) |
random_integers(low[, high, size]) |
返回随机的整数,位于闭区间 [low, high]。 Notes To sample from N evenly spaced floating-point numbers between a and b, use: a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.) Examples ![]() >>> np.random.random_integers(5) ![]() Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from the set >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4. Roll two six sided dice 1000 times and sum the results: >>> d1 = np.random.random_integers(1, 6, 1000) Display results as a histogram: >>> import matplotlib.pyplot as plt |
random_sample([size]) |
返回随机的浮点数,在半开区间 [0.0, 1.0)。 To sample (b - a) * random_sample() + a Examples ![]() >>> np.random.random_sample() ![]() Three-by-two array of random numbers from [-5, 0): >>> 5 * np.random.random_sample((3, 2)) - 5 |
random([size]) |
返回随机的浮点数,在半开区间 [0.0, 1.0)。 (官网例子与random_sample完全一样) |
ranf([size]) |
返回随机的浮点数,在半开区间 [0.0, 1.0)。 (官网例子与random_sample完全一样) |
sample([size]) |
返回随机的浮点数,在半开区间 [0.0, 1.0)。 (官网例子与random_sample完全一样) |
choice(a[, size, replace, p]) |
生成一个随机样本,从一个给定的一维数组 Examples Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = [‘pooh‘, ‘rabbit‘, ‘piglet‘, ‘Christopher‘] |
bytes(length) |
返回随机字节。 >>> np.random.bytes(10) |
排列
shuffle(x) |
现场修改序列,改变自身内容。(类似洗牌,打乱顺序) >>> arr = np.arange(10) This function only shuffles the array along the first index of a multi-dimensional array: >>> arr = np.arange(9).reshape((3, 3)) |
permutation(x) |
返回一个随机排列 >>> np.random.permutation(10) >>> np.random.permutation([1, 4, 9, 12, 15]) >>> arr = np.arange(9).reshape((3, 3)) |
分布
beta(a, b[, size]) |
贝塔分布样本,在 [0, 1]内。 |
binomial(n, p[, size]) |
二项分布的样本。 |
chisquare(df[, size]) |
卡方分布样本。 |
dirichlet(alpha[, size]) |
狄利克雷分布样本。 |
exponential([scale, size]) |
指数分布 |
f(dfnum, dfden[, size]) |
F分布样本。 |
gamma(shape[, scale, size]) |
伽马分布 |
geometric(p[, size]) |
几何分布 |
gumbel([loc, scale, size]) |
耿贝尔分布。 |
hypergeometric(ngood, nbad, nsample[, size]) |
超几何分布样本。 |
laplace([loc, scale, size]) |
拉普拉斯或双指数分布样本 |
logistic([loc, scale, size]) |
Logistic分布样本 |
lognormal([mean, sigma, size]) |
对数正态分布 |
logseries(p[, size]) |
对数级数分布。 |
multinomial(n, pvals[, size]) |
多项分布 |
multivariate_normal(mean, cov[, size]) |
多元正态分布。 >>> mean = [0,0] >>> import matplotlib.pyplot as plt |
negative_binomial(n, p[, size]) |
负二项分布 |
noncentral_chisquare(df, nonc[, size]) |
非中心卡方分布 |
noncentral_f(dfnum, dfden, nonc[, size]) |
非中心F分布 |
normal([loc, scale, size]) |
正态(高斯)分布 Notes The probability density for the Gaussian distribution is where The function has its peak at the mean, and its “spread” increases with the standard deviation (the function reaches 0.607 times its maximum at Examples Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation Verify the mean and the variance: >>> abs(mu - np.mean(s)) < 0.01 Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt |
pareto(a[, size]) |
帕累托(Lomax)分布 |
poisson([lam, size]) |
泊松分布 |
power(a[, size]) |
Draws samples in [0, 1] from a power distribution with positive exponent a - 1. |
rayleigh([scale, size]) |
Rayleigh 分布 |
standard_cauchy([size]) |
标准柯西分布 |
standard_exponential([size]) |
标准的指数分布 |
standard_gamma(shape[, size]) |
标准伽马分布 |
standard_normal([size]) |
标准正态分布 (mean=0, stdev=1). |
standard_t(df[, size]) |
Standard Student’s t distribution with df degrees of freedom. |
triangular(left, mode, right[, size]) |
三角形分布 |
uniform([low, high, size]) |
均匀分布 |
vonmises(mu, kappa[, size]) |
von Mises分布 |
wald(mean, scale[, size]) |
瓦尔德(逆高斯)分布 |
weibull(a[, size]) |
Weibull 分布 |
zipf(a[, size]) |
齐普夫分布 |
随机数生成器
Container for the Mersenne Twister pseudo-random number generator. | |
seed([seed]) |
Seed the generator. |
Return a tuple representing the internal state of the generator. | |
set_state(state) |
Set the internal state of the generator from a tuple. |
随机抽样 (numpy.random)的更多相关文章
- NumPy的随机函数子库——numpy.random
NumPy的随机函数子库numpy.random 导入模块:import numpy as np 1.numpy.random.rand(d0,d1,...,dn) 生成一个shape为(d0,d1, ...
- numpy.random.seed()方法
先贴参考链接: https://stackoverflow.com/questions/21494489/what-does-numpy-random-seed0-do numpy.random.se ...
- numpy.random中的shuffle和permutation以及mini-batch调整数据集(X, Y)
0. numpy.random中的shuffle和permutation numpy.random.shuffle(x) and numpy.random.permutation(x),这两个有什么不 ...
- python基础--numpy.random
# *_*coding:utf-8 *_* # athor:auto import numpy.random #rand(d0, d1, ..., dn)n维随机值 data0 = numpy.ran ...
- numpy.random 常用函数详解之排列乱序篇(Permutations)
1.numpy.random.shuffle(x) 参数:填入数组或列表. 返回值:无. 函数功能描述:对填入的数组或列表进行乱序处理,shape保持不变. 2.numpy.random.permut ...
- numpy.random 常用函数详解之简单随机数篇(Simple random data)
1.numpy.random.rand(d0,d1,d2,...,dn) 参数:d0,d1,d2,...,dn 须是正整数,用来描述生成随机数组的维度.如(3,2)代表生成3行2列的随机数组. 返回值 ...
- numpy.random.uniform()
numpy.random.uniform均匀分布 2018年06月19日 23:28:03 徐小妹 阅读数:4238 numpy.random.uniform介绍: 1. 函数原型: numpy ...
- numpy.random.randn()与numpy.random.rand()的区别(转)
numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. n ...
- 使用 numpy.random.choice随机采样
使用 numpy.random.choice随机采样: 说明: numpy.random.choice(a, size=None, replace=True, p=None) 示例: >> ...
随机推荐
- LintCode刷题笔记-- Count1 binary
标签: 位运算 描述: Count how many 1 in binary representation of a 32-bit integer. 解题思路: 统计一个int型的数的二进制表现形式中 ...
- springboot security 安全
spring security几个概念 “认证”(Authentication) 是建立一个他声明的主体的过程(一个“主体”一般是指用户,设备或一些可以在你的应用程序中执行动作的其他系统) . “授权 ...
- 第二章 使用eclipse创建web项目
一.启动eclipse,点击菜单栏中的File->New->Dynamic Web Project新建一个动态网站项目 二.设置项目名称和运行服务器 三.点击next,进行下一步 四.如图 ...
- 2018-8-29-Roslyn-通过-Target-修改编译的文件
title author date CreateTime categories Roslyn 通过 Target 修改编译的文件 lindexi 2018-08-29 09:10:46 +0800 2 ...
- @topcoder - SRM766R1 D1L3@ ShortestMissingSubsequences
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个大小为 G 的字符集,并给定一个长度为 N 的字符串 A ...
- 国外最受欢迎的十大社交APP网站
国外最受欢迎的十大社交APP网站 2016-11-01 09:34悠悠国外网 有哪些好的国外社交软件你知道吗,想使用国外流行的社交应用来体验不一样的社交么,想和外国友人交朋友么.本期悠悠国外网 ...
- POJ-3026_Borg Maze
Borg Maze Time Limit: 1000MS Memory Limit: 65536K Description The Borg is an immensely powerful race ...
- @codeforces - 444A@ DZY Loves Physics
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 点 m 边的图,边有边权,点有点权. 找到一个连通 ...
- 2018-9-30-C#-从零开始写-SharpDx-应用-画三角
title author date CreateTime categories C# 从零开始写 SharpDx 应用 画三角 lindexi 2018-09-30 18:30:14 +0800 20 ...
- Redis源码解析:07压缩列表
压缩列表(ziplist)是列表键和哈希键的底层实现之一.当列表键只包含少量列表项,并且每个列表项要么是小整数值,要么是长度较短的字符串时:或者当哈希键只包含少量键值对,并且每个键值对的键和值要么是小 ...