随机抽样 (numpy.random)
随机抽样 (numpy.random)
简单的随机数据
rand(d0, d1, ..., dn) |
随机值 >>> np.random.rand(3,2) |
randn(d0, d1, ..., dn) |
返回一个样本,具有标准正态分布。 Notes For random samples from sigma * np.random.randn(...) + mu Examples >>> np.random.randn() Two-by-four array of samples from N(3, 6.25): >>> 2.5 * np.random.randn(2, 4) + 3 |
randint(low[, high, size]) |
返回随机的整数,位于半开区间 [low, high)。 >>> np.random.randint(2, size=10) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> np.random.randint(5, size=(2, 4)) |
random_integers(low[, high, size]) |
返回随机的整数,位于闭区间 [low, high]。 Notes To sample from N evenly spaced floating-point numbers between a and b, use: a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.) Examples ![]() >>> np.random.random_integers(5) ![]() Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from the set >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4. Roll two six sided dice 1000 times and sum the results: >>> d1 = np.random.random_integers(1, 6, 1000) Display results as a histogram: >>> import matplotlib.pyplot as plt |
random_sample([size]) |
返回随机的浮点数,在半开区间 [0.0, 1.0)。 To sample (b - a) * random_sample() + a Examples ![]() >>> np.random.random_sample() ![]() Three-by-two array of random numbers from [-5, 0): >>> 5 * np.random.random_sample((3, 2)) - 5 |
random([size]) |
返回随机的浮点数,在半开区间 [0.0, 1.0)。 (官网例子与random_sample完全一样) |
ranf([size]) |
返回随机的浮点数,在半开区间 [0.0, 1.0)。 (官网例子与random_sample完全一样) |
sample([size]) |
返回随机的浮点数,在半开区间 [0.0, 1.0)。 (官网例子与random_sample完全一样) |
choice(a[, size, replace, p]) |
生成一个随机样本,从一个给定的一维数组 Examples Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = [‘pooh‘, ‘rabbit‘, ‘piglet‘, ‘Christopher‘] |
bytes(length) |
返回随机字节。 >>> np.random.bytes(10) |
排列
shuffle(x) |
现场修改序列,改变自身内容。(类似洗牌,打乱顺序) >>> arr = np.arange(10) This function only shuffles the array along the first index of a multi-dimensional array: >>> arr = np.arange(9).reshape((3, 3)) |
permutation(x) |
返回一个随机排列 >>> np.random.permutation(10) >>> np.random.permutation([1, 4, 9, 12, 15]) >>> arr = np.arange(9).reshape((3, 3)) |
分布
beta(a, b[, size]) |
贝塔分布样本,在 [0, 1]内。 |
binomial(n, p[, size]) |
二项分布的样本。 |
chisquare(df[, size]) |
卡方分布样本。 |
dirichlet(alpha[, size]) |
狄利克雷分布样本。 |
exponential([scale, size]) |
指数分布 |
f(dfnum, dfden[, size]) |
F分布样本。 |
gamma(shape[, scale, size]) |
伽马分布 |
geometric(p[, size]) |
几何分布 |
gumbel([loc, scale, size]) |
耿贝尔分布。 |
hypergeometric(ngood, nbad, nsample[, size]) |
超几何分布样本。 |
laplace([loc, scale, size]) |
拉普拉斯或双指数分布样本 |
logistic([loc, scale, size]) |
Logistic分布样本 |
lognormal([mean, sigma, size]) |
对数正态分布 |
logseries(p[, size]) |
对数级数分布。 |
multinomial(n, pvals[, size]) |
多项分布 |
multivariate_normal(mean, cov[, size]) |
多元正态分布。 >>> mean = [0,0] >>> import matplotlib.pyplot as plt |
negative_binomial(n, p[, size]) |
负二项分布 |
noncentral_chisquare(df, nonc[, size]) |
非中心卡方分布 |
noncentral_f(dfnum, dfden, nonc[, size]) |
非中心F分布 |
normal([loc, scale, size]) |
正态(高斯)分布 Notes The probability density for the Gaussian distribution is where The function has its peak at the mean, and its “spread” increases with the standard deviation (the function reaches 0.607 times its maximum at Examples Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation Verify the mean and the variance: >>> abs(mu - np.mean(s)) < 0.01 Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt |
pareto(a[, size]) |
帕累托(Lomax)分布 |
poisson([lam, size]) |
泊松分布 |
power(a[, size]) |
Draws samples in [0, 1] from a power distribution with positive exponent a - 1. |
rayleigh([scale, size]) |
Rayleigh 分布 |
standard_cauchy([size]) |
标准柯西分布 |
standard_exponential([size]) |
标准的指数分布 |
standard_gamma(shape[, size]) |
标准伽马分布 |
standard_normal([size]) |
标准正态分布 (mean=0, stdev=1). |
standard_t(df[, size]) |
Standard Student’s t distribution with df degrees of freedom. |
triangular(left, mode, right[, size]) |
三角形分布 |
uniform([low, high, size]) |
均匀分布 |
vonmises(mu, kappa[, size]) |
von Mises分布 |
wald(mean, scale[, size]) |
瓦尔德(逆高斯)分布 |
weibull(a[, size]) |
Weibull 分布 |
zipf(a[, size]) |
齐普夫分布 |
随机数生成器
Container for the Mersenne Twister pseudo-random number generator. | |
seed([seed]) |
Seed the generator. |
Return a tuple representing the internal state of the generator. | |
set_state(state) |
Set the internal state of the generator from a tuple. |
随机抽样 (numpy.random)的更多相关文章
- NumPy的随机函数子库——numpy.random
NumPy的随机函数子库numpy.random 导入模块:import numpy as np 1.numpy.random.rand(d0,d1,...,dn) 生成一个shape为(d0,d1, ...
- numpy.random.seed()方法
先贴参考链接: https://stackoverflow.com/questions/21494489/what-does-numpy-random-seed0-do numpy.random.se ...
- numpy.random中的shuffle和permutation以及mini-batch调整数据集(X, Y)
0. numpy.random中的shuffle和permutation numpy.random.shuffle(x) and numpy.random.permutation(x),这两个有什么不 ...
- python基础--numpy.random
# *_*coding:utf-8 *_* # athor:auto import numpy.random #rand(d0, d1, ..., dn)n维随机值 data0 = numpy.ran ...
- numpy.random 常用函数详解之排列乱序篇(Permutations)
1.numpy.random.shuffle(x) 参数:填入数组或列表. 返回值:无. 函数功能描述:对填入的数组或列表进行乱序处理,shape保持不变. 2.numpy.random.permut ...
- numpy.random 常用函数详解之简单随机数篇(Simple random data)
1.numpy.random.rand(d0,d1,d2,...,dn) 参数:d0,d1,d2,...,dn 须是正整数,用来描述生成随机数组的维度.如(3,2)代表生成3行2列的随机数组. 返回值 ...
- numpy.random.uniform()
numpy.random.uniform均匀分布 2018年06月19日 23:28:03 徐小妹 阅读数:4238 numpy.random.uniform介绍: 1. 函数原型: numpy ...
- numpy.random.randn()与numpy.random.rand()的区别(转)
numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. n ...
- 使用 numpy.random.choice随机采样
使用 numpy.random.choice随机采样: 说明: numpy.random.choice(a, size=None, replace=True, p=None) 示例: >> ...
随机推荐
- Directx11教程(19) 画一个简单的地形
原文:Directx11教程(19) 画一个简单的地形 通常我们在xz平面定义一个二维的网格,然后y的值根据一定的函数计算得到,比如正弦.余弦函数的组合等等,可以得到一个看似不错的地形或者 ...
- virtualenv安装 以及在PyCharm中的使用
1.安装前条件 python3.7和 pip(可以使用这个命令升级python -m pip install --upgrade pip) 2.安装virtualenv pip install vir ...
- Quick BI独创千人千面的行级权限管控机制
摘要 就数据访问权限而言,阿里巴巴以“被动式授权”为主,你需要什么权限就申请什么权限.但是,在客户交流过程中,我们发现绝大多数企业都是集中式授权,尤其是面向个人的行级权限管控,管理复杂度往往呈几何增长 ...
- font-weight:bolder与设置数值的区别
我之前设置了font-weight:bolder;一直不明白为什么在浏览器上显示最后的效果就变成了normal呢,后来查了一下才发现bolder是相对父元素的. 如果父对象的值为 normal,子对象 ...
- Java面向对象----接口概念
接口语法 interface 接口名{ //静态常量,抽象方法 } 特点 接口中只能存放静态常量和抽象方法 java接口是对功能的扩展 通过实现接口,java类可以实现多实现 一个类可以同时继承(ex ...
- OpenStack宣布用Kubernetes重写底层编排引擎
Mirantis是OpenStack的主要贡献者,今天他宣布将使用Kubernetes作为底层编排引擎重写其私有云平台.我们认为这是推进OpenStack和Kubernetes 社区伟大的一步. Op ...
- Win10系统使用Docker安装oracle并通过Navicat for oracle进行登录
一.安装Docker Linux系统可以直接采用命令进行Docker安装: Win7系统安装Dokcer实际通过Boot2Docker在Windows下安装一个VirtualBox来实现: Boot2 ...
- 日志 5.27 关于AssetBundle
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/zxsean/article/details/27228783 大概日志就这么写的吧.没什么太专业的东 ...
- Tcp之双向通信
TestServer.java package com.sxt.tcp; /* * 服务端 */ import java.io.DataInputStream; import java.io.Data ...
- 安装pip3遇到:E: Unmet dependencies. Try 'apt-get -f install' with no packages (or specify a solution).
安装pip3遇到:E: Unmet dependencies. Try 'apt-get -f install' with no packages (or specify a solution). 具 ...