MNIST中文手写数字数据识别

实验环境

python=3.7
torch==1.13.1+cu117
torchaudio==0.13.1+cu117
torchvision==0.14.1

数据描述

数据下载地址:https://pan.baidu.com/s/1olCgmCy0qppi5evInewFIQ?pwd=98yc

原始数据为png格式的图片,已将其序列化。总共15000张中文手写数字汉字灰度图片,以numpy.ndarray数据类型保存每张图片尺寸为64×64

这些汉字包括:

零、一、二、三、四、五、六、七、八、九、十、百、千、万、亿

总共15个汉字,分别用0、1、2、3、4、5、6、7、8、9、10、100、1000、10000、100000000标记

使用方法

import pickle, numpy

with open("./chn_mnist", "rb") as f:
data = pickle.load(f)
images = data["images"]
targets = data["targets"]

数据预处理

数据加载

将数据存入俩个变量,格式为numpy.ndarray

#修改自己的数据集路径
with open(r"D:\zr\data\chn_mnist\chn_mnist", "rb") as f:
dataset = pickle.load(f)
images = dataset["images"]
targets = dataset["targets"]

统一标签值

100、1000、10000、100000000这四个标签分别用11、12、13、14表示

index = np.where(targets == 100)
targets[index] = 11
index = np.where(targets == 1000)
targets[index] = 12
index = np.where(targets == 10000)
targets[index] = 13
index = np.where(targets == 100000000)
targets[index] = 14

构建数据集

构建Dataset

使用torch.utils.data.DataLoader根据数据集生成一个可迭代的对象,用于模型训练前,需要构建自己的Dataset类

在定义自己的数据集时,需要继承Dataset类,并实现三个函数:initlen__和__getitem

init:实例化Dataset对象时运行,完成初始化工作

len:返回数据集的大小

getitem:根据索引返回一个样本(数据和标签)

import numpy as np
from torch.utils.data import Dataset
from PIL import Image class MyDataset(Dataset):
def __init__(self, data, targets, transform=None, target_transform=None):
'''
data 数据形状为(x,64,64) x张64*64图像数组
targets 数据形状为(x) x个图像类别取值
'''
self.transform = transform
self.target_transform = target_transform
self.data = []
self.targets = []
#转换数据格式
targets = targets.astype(np.uint8)
#标签集不做任何处理的情况下
if target_transform is None:
self.targets = targets
#我这里transform处理numpy数组图像会报错,需要将图像转为Image格式
#遍历依次对每个图像转换
for index in range(0, data.shape[0]):
if self.transform:
image = Image.fromarray(data[index])
self.data.append(self.transform(image))
if self.target_transform:
self.targets.append(self.target_transform(targets))
def __len__(self):
return len(self.data) def __getitem__(self, index):
return self.data[index], self.targets[index]

定义转换方法,对于图像数组,将每个像素点取值规范至0-1之间,均值为0.5

transform_data = transforms.Compose([
#确保所有图像都为(64,64),此处图像为标准数据,可以不用
torchvision.transforms.Resize((64, 64)),
#将PIL Image格式的数据转换为tensor格式,像素值大小缩放至区间[0., 1.]
transforms.ToTensor(),
#对输入进行标准化,传入均值(mean[1],…,mean[n])和标准差(std[1],…,std[n]),n与输入的维度相同
#对于三通道图像(mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5])
transforms.Normalize(mean=[0.5], std=[0.5])])
transform_target = None

实例化Dataset类,此处将前14000张作为训练集,后1000张作为测试集

train_dataset = dataloader.MyDataset(images[:14000, :, :], targets[:14000], transform_data, transform_target)
test_dataset = dataloader.MyDataset(images[-1000:, :, :], targets[-1000:], transform_data, transform_target)

DataLoader加载数据集

DataLoader参数解释,通常填前三个参数即可

常用参数:

  • dataset (Dataset) :定义好的数据集
  • batch_size (int, optional):每次放入网络训练的批次大小,默认为1.
  • shuffle (bool, optional) :是否打乱数据的顺序,默认为False。一般训练集设置为True,测试集设置为False
  • num_workers (int, optional) :线程数,默认为0。在Windows下设置大于0的数可能会报错
  • drop_last (bool, optional) :是否丢弃最后一个批次的数据,默认为False

两个工具包,可配合DataLoader使用:

  • enumerate(iterable, start=0):输入是一个可迭代的对象和下标索引开始值;返回可迭代对象的下标索引和数据本身
  • tqdm(iterable):进度条可视化工具包

定义超参数

# 定义超参数
#每次进入模型的图像数量
batch_size = 32
#学习率
learning_rate = 0.001
#总的迭代次数
num_epochs = 50

加载

#shuffle=True表示打乱数据
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size)

模型构建

CNN

自定义卷积模块,对于不同数据集,修改输入图像通道数和输出的分类数量即可

import torch
import torch.nn as nn class SelfCnn(nn.Module):
def __init__(self):
super(SelfCnn, self).__init__()
self.features = nn.Sequential(
# Block 1
nn.Conv2d(1, 32, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2), # (32,32,64)
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2), # (16,16,64)
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2), # (8,8,64) )
self.classifier = nn.Sequential(
nn.Linear(8 * 8 * 64, 256),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(256, 256),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(256, 15) # 输出层,二分类任务
) def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1) # 展开特征图
x = self.classifier(x)
return x

加载模型

model=SelfCnn()

VGG16

VGG16由于模型参数量太大,自己从0训练不大能行,需要加载pytorch的预训练模型

#pretrained = True代表加载预训练数据
vgg16_ture = torchvision.models.vgg16(pretrained = True)

VGG16默认的输入图像数据为(224,224,3),输出为(1,1,1000) 我们的数据输入为(64,64,1),目标输出为(1,1,15),因此需要对模型进行修改结构

#增加一层线性变化,将1000类变为15类
vgg16_ture.classifier.append(nn.Linear(1000,15))
#全连接层修改,原来为(7*7*512),将(224/32=)7换为(64/32=)2即可
vgg16_ture.classifier[0]=nn.Linear(2*2*512,4096)
#输入的三通道改为单通道1
vgg16_ture.features[0]=nn.Conv2d(1, 64, kernel_size=3, padding=1)
vgg16_ture.avgpool=nn.AdaptiveAvgPool2d((2,2))
model=vgg16_ture

ResNet50

ResNet50同样需要加载预训练模型

#pretrained = True代表加载预训练数据
resnet50 = torchvision.models.resnet50(pretrained=True)

ResNet50默认输入为三通道图像,将其修改为单通道,以及全连接层输出分类修改

#输入的三通道改为单通道1
resnet50.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3)
#将输出分类改为15
resnet50.fc = (nn.Linear(2048, 15))
model=resnet50

模型训练

选择模型以及训练环境

#有gpu则使用gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#选择使用的模型,model=vgg16_ture,model=SelfCnn()
#加载已经训练过的模型: model=torch.load(r'D:\zr\projects\utils\chn_mnist_resnet50.pth')
model=resnet50
#将模型置于device
model.to(device)

定义损失函数和优化器

#多分类任务使用这个损失
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), momentum=0.9, lr=learning_rate)

定义绘图方法,本例绘制俩附图像

def plt_img(plt_data):
# 创建数据点
plt.clf()
x = plt_data.get('Epoch')
train_acc = plt_data.get('train_acc')
train_loss = plt_data.get('train_loss')
test_acc = plt_data.get('test_acc')
test_loss = plt_data.get('test_loss')
# 绘制曲线
plt.plot(x, train_acc, label='train_acc')
plt.plot(x, test_acc, label='test_acc')
plt.plot(x, train_loss, label='train_loss')
plt.plot(x, test_loss, label='test_loss')
plt.legend(title='Accuracy And Loss') # 添加图例标题
plt.xlabel('epoch')
# plt.ylabel('rate')
plt.savefig(f'resnet50_{num_epochs}_{batch_size}_{learning_rate}_1.png')
# 显示图形
def plt_acc_loss(plt_data):
plt.clf()
_, axes = plt.subplots(2, 1)
x = plt_data.get('Epoch')
train_acc = plt_data.get('train_acc')
train_loss = plt_data.get('train_loss')
test_acc = plt_data.get('test_acc')
test_loss = plt_data.get('test_loss')
axes[0].plot(x, train_acc, label='train_acc')
axes[0].plot(x, test_acc, label='test_acc')
axes[0].legend(title='Accuracy') # 添加图例标题
axes[0].set_xlabel('epoch')
# axes[0].set_ylabel('rate')
axes[1].plot(x, train_loss, label='train_loss')
axes[1].plot(x, test_loss, label='test_loss')
axes[1].legend(title='Loss')
axes[1].set_xlabel('epoch')
# axes[1].set_ylabel('rate')
# 防止标签被遮挡
plt.tight_layout()
plt.savefig(f'resnet50_{num_epochs}_{batch_size}_{learning_rate}_2.png')

开始训练,每次epoch结束都会对模型进行评估,保存准确率最高的模型,同时记录每次的准确率以及loss

max_acc = 0.0
plt_data = {
'Epoch': [],
'train_acc': [],
'train_loss': [],
'test_acc': [],
'test_loss': [], }
for epoch in range(num_epochs):
plt_data.get('Epoch').append(epoch + 1)
model.eval()
torch.no_grad()
correct = 0.0
total = 0.0
loss_ = 0.0
#测试模型
loop = tqdm(enumerate(test_loader), total=len(test_loader))
for i, (images, labels) in loop:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
loss_ += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc = correct / total
loop.set_description(f'Epoch Test [{epoch + 1}/{num_epochs}]')
loop.set_postfix(loss=loss_/(i+1), acc=acc)
if epoch == 0:
print('原有模型在测试集表现如下:')
acc = correct / total
loss_ = loss_ / len(test_loader)
plt_data.get('test_acc').append(acc)
plt_data.get('test_loss').append(loss_)
print(f"Accuracy on test images: {acc * 100}% , Loss {loss_}")
if acc > max_acc:
max_acc = acc
torch.save(model, 'chn_mnist_resnet50.pth')
print('The model has been saved as chn_mnist_resnet50.pth')
correct = 0.0
total = 0.0
loss_ = 0.0
time.sleep(0.1)
#训练
loop = tqdm(enumerate(train_loader), total=len(train_loader))
for i, (images, labels) in loop:
images = images.to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
loss_ += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc = correct / total
# 反向传播和优化,测试集时不要要
optimizer.zero_grad()
loss.backward()
optimizer.step()
loop.set_description(f'Epoch Train [{epoch + 1}/{num_epochs}]')
loop.set_postfix(loss=loss_/(i+1), acc=acc)
acc = correct / total
loss_ = loss_ / len(train_loader)
plt_data.get('train_acc').append(acc)
plt_data.get('train_loss').append(loss_)
print(f"Accuracy on train images: {acc * 100}% , Loss {loss_}")
time.sleep(0.1)
#绘图
plt_img(plt_data)
plt_acc_loss(plt_data)

结果分析

以下结果均在总训练次数(Epoch)=100,学习率(learn_rate_=0.001,批样本数量(Batch Size)=32的情况下

CNN



测试表现

训练集准确率为:99.99%,测试集准确率为 88.5%,模型存在过拟合

VGG16



可见模型正在Epoch =10左右的时候就基本收敛完成

测试表现

训练集准确率为:99.92%,测试集准确率为 99.5%,模型良好且泛化能力强

ResNet50



可见模型正在Epoch =10之前的时候就基本收敛完成,相较于VGG,resnet50的收敛速度更快

测试表现

训练集准确率为:100%,测试集准确率为 96.8%,模型良好但存在过拟合

源代码

dataloader.py

import numpy as np
from torch.utils.data import Dataset
from PIL import Image class MyDataset(Dataset):
def __init__(self, data, targets, transform=None, target_transform=None):
self.transform = transform
self.target_transform = target_transform
self.data = []
self.targets = []
targets = targets.astype(np.uint8)
if target_transform is None:
self.targets = targets
for index in range(0, data.shape[0]):
if self.transform:
image = Image.fromarray(data[index])
self.data.append(self.transform(image))
if self.target_transform:
self.targets.append(self.target_transform(targets))
def __len__(self):
return len(self.data) def __getitem__(self, index):
return self.data[index], self.targets[index]

selfnet_cnn.py

import torch
import torch.nn as nn class SelfCnn(nn.Module):
def __init__(self):
super(SelfCnn, self).__init__()
self.features = nn.Sequential(
# Block 1
nn.Conv2d(1, 32, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2), # (32,32,64)
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2), # (16,16,64)
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2), # (8,8,64) )
self.classifier = nn.Sequential(
nn.Linear(8 * 8 * 64, 256),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(256, 256),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(256, 15) # 输出层,二分类任务
) def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1) # 展开特征图
x = self.classifier(x)
return x

train_self_cnn.py

import pickle
import time
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
import dataloader
import torch
import torchvision
import torchvision.transforms as transforms
from tqdm import tqdm
import os from selfnet_cnn import SelfCnn os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 定义数据转换
transform_data = transforms.Compose([
torchvision.transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
transform_target = None
with open(r"D:\zr\data\chn_mnist\chn_mnist", "rb") as f:
dataset = pickle.load(f)
images = dataset["images"]
targets = dataset["targets"]
index = np.where(targets == 100)
targets[index] = 11
index = np.where(targets == 1000)
targets[index] = 12
index = np.where(targets == 10000)
targets[index] = 13
index = np.where(targets == 100000000)
targets[index] = 14 train_dataset = dataloader.MyDataset(images[:14000, :, :], targets[:14000], transform_data, transform_target)
test_dataset = dataloader.MyDataset(images[-1000:, :, :], targets[-1000:], transform_data, transform_target) # 定义超参数
batch_size = 32
learning_rate = 0.001
num_epochs = 100
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model=SelfCnn()
# model = torch.load(r'D:\zr\projects\utils\chn_mnist_resnet50.pth', map_location=device)
model.to(device)
# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), momentum=0.9, lr=learning_rate)
def plt_img(plt_data):
# 创建数据点
plt.clf()
x = plt_data.get('Epoch')
train_acc = plt_data.get('train_acc')
train_loss = plt_data.get('train_loss')
test_acc = plt_data.get('test_acc')
test_loss = plt_data.get('test_loss')
# 绘制曲线
plt.plot(x, train_acc, label='train_acc')
plt.plot(x, test_acc, label='test_acc')
plt.plot(x, train_loss, label='train_loss')
plt.plot(x, test_loss, label='test_loss')
plt.legend(title='Accuracy And Loss') # 添加图例标题
plt.xlabel('epoch')
# plt.ylabel('rate')
plt.savefig(f'selfCnn_{num_epochs}_{batch_size}_{learning_rate}_1.png')
# 显示图形
def plt_acc_loss(plt_data):
plt.clf()
_, axes = plt.subplots(2, 1)
x = plt_data.get('Epoch')
train_acc = plt_data.get('train_acc')
train_loss = plt_data.get('train_loss')
test_acc = plt_data.get('test_acc')
test_loss = plt_data.get('test_loss')
axes[0].plot(x, train_acc, label='train_acc')
axes[0].plot(x, test_acc, label='test_acc')
axes[0].legend(title='Accuracy') # 添加图例标题
axes[0].set_xlabel('epoch')
# axes[0].set_ylabel('rate')
axes[1].plot(x, train_loss, label='train_loss')
axes[1].plot(x, test_loss, label='test_loss')
axes[1].legend(title='Loss')
axes[1].set_xlabel('epoch')
# axes[1].set_ylabel('rate')
# 防止标签被遮挡
plt.tight_layout()
plt.savefig(f'selfCnn_{num_epochs}_{batch_size}_{learning_rate}_2.png')
# 训练模型
max_acc = 0.0
plt_data = {
'Epoch': [],
'train_acc': [],
'train_loss': [],
'test_acc': [],
'test_loss': [], } for epoch in range(num_epochs):
plt_data.get('Epoch').append(epoch + 1)
model.eval()
torch.no_grad()
correct = 0.0
total = 0.0
loss_ = 0.0
loop = tqdm(enumerate(test_loader), total=len(test_loader))
for i, (images, labels) in loop:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
loss_ += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc = correct / total
loop.set_description(f'Epoch Test [{epoch + 1}/{num_epochs}]')
loop.set_postfix(loss=loss_/(i+1), acc=acc)
if epoch == 0:
print('原有模型在测试集表现如下:')
acc = correct / total
loss_ = loss_ / len(test_loader)
plt_data.get('test_acc').append(acc)
plt_data.get('test_loss').append(loss_)
print(f"Accuracy on test images: {acc * 100}% , Loss: {loss_}")
if acc > max_acc:
max_acc = acc
torch.save(model, 'chn_mnist_selfCnn.pth')
print('The model has been saved as chn_mnist_selfCnn.pth')
correct = 0.0
total = 0.0
loss_ = 0.0
time.sleep(0.1)
loop = tqdm(enumerate(train_loader), total=len(train_loader))
for i, (images, labels) in loop:
images = images.to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
loss_ += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc = correct / total
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
loop.set_description(f'Epoch Train [{epoch + 1}/{num_epochs}]')
loop.set_postfix(loss=loss_/(i+1), acc=acc)
acc = correct / total
loss_ = loss_ / len(train_loader)
plt_data.get('train_acc').append(acc)
plt_data.get('train_loss').append(loss_)
print(f"Accuracy on train images: {acc * 100}% , Loss: {loss_}")
time.sleep(0.1)
plt_img(plt_data)
plt_acc_loss(plt_data)

train_vgg16.py

import pickle
import time
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
import dataloader
import torch
import torchvision
import torchvision.transforms as transforms
from tqdm import tqdm
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 定义数据转换
transform_data = transforms.Compose([
torchvision.transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
transform_target = None
with open(r"D:\zr\data\chn_mnist\chn_mnist", "rb") as f:
dataset = pickle.load(f)
images = dataset["images"]
targets = dataset["targets"]
index = np.where(targets == 100)
targets[index] = 11
index = np.where(targets == 1000)
targets[index] = 12
index = np.where(targets == 10000)
targets[index] = 13
index = np.where(targets == 100000000)
targets[index] = 14 train_dataset = dataloader.MyDataset(images[:14000, :, :], targets[:14000], transform_data, transform_target)
test_dataset = dataloader.MyDataset(images[-1000:, :, :], targets[-1000:], transform_data, transform_target) # 定义超参数
batch_size = 32
learning_rate = 0.001
num_epochs = 50
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") vgg16_ture = torchvision.models.vgg16(pretrained = True)
vgg16_ture.classifier.append(nn.Linear(1000,15))
vgg16_ture.classifier[0]=nn.Linear(2*2*512,4096)
vgg16_ture.features[0]=nn.Conv2d(1, 64, kernel_size=3, padding=1)
vgg16_ture.avgpool=nn.AdaptiveAvgPool2d((2,2))
model=vgg16_ture
# model = torch.load(r'D:\zr\projects\utils\chn_mnist_resnet50.pth', map_location=device)
model.to(device)
# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), momentum=0.9, lr=learning_rate)
def plt_img(plt_data):
# 创建数据点
plt.clf()
x = plt_data.get('Epoch')
train_acc = plt_data.get('train_acc')
train_loss = plt_data.get('train_loss')
test_acc = plt_data.get('test_acc')
test_loss = plt_data.get('test_loss')
# 绘制曲线
plt.plot(x, train_acc, label='train_acc')
plt.plot(x, test_acc, label='test_acc')
plt.plot(x, train_loss, label='train_loss')
plt.plot(x, test_loss, label='test_loss')
plt.legend(title='Accuracy And Loss') # 添加图例标题
plt.xlabel('epoch')
# plt.ylabel('rate')
plt.savefig(f'vgg16_{num_epochs}_{batch_size}_{learning_rate}_1.png')
# 显示图形
def plt_acc_loss(plt_data):
plt.clf()
_, axes = plt.subplots(2, 1)
x = plt_data.get('Epoch')
train_acc = plt_data.get('train_acc')
train_loss = plt_data.get('train_loss')
test_acc = plt_data.get('test_acc')
test_loss = plt_data.get('test_loss')
axes[0].plot(x, train_acc, label='train_acc')
axes[0].plot(x, test_acc, label='test_acc')
axes[0].legend(title='Accuracy') # 添加图例标题
axes[0].set_xlabel('epoch')
# axes[0].set_ylabel('rate')
axes[1].plot(x, train_loss, label='train_loss')
axes[1].plot(x, test_loss, label='test_loss')
axes[1].legend(title='Loss')
axes[1].set_xlabel('epoch')
# axes[1].set_ylabel('rate')
# 防止标签被遮挡
plt.tight_layout()
plt.savefig(f'vgg16_{num_epochs}_{batch_size}_{learning_rate}_2.png')
# 训练模型
max_acc = 0.0
plt_data = {
'Epoch': [],
'train_acc': [],
'train_loss': [],
'test_acc': [],
'test_loss': [], } for epoch in range(num_epochs):
plt_data.get('Epoch').append(epoch + 1)
model.eval()
torch.no_grad()
correct = 0.0
total = 0.0
loss_ = 0.0
loop = tqdm(enumerate(test_loader), total=len(test_loader))
for i, (images, labels) in loop:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
loss_ += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc = correct / total
loop.set_description(f'Epoch Test [{epoch + 1}/{num_epochs}]')
loop.set_postfix(loss=loss_/(i+1), acc=acc)
if epoch == 0:
print('原有模型在测试集表现如下:')
acc = correct / total
loss_ = loss_ / len(test_loader)
plt_data.get('test_acc').append(acc)
plt_data.get('test_loss').append(loss_)
print(f"Accuracy on test images: {acc * 100}% , Loss: {loss_}")
if acc > max_acc:
max_acc = acc
torch.save(model, 'chn_mnist_vgg16.pth')
print('The model has been saved as chn_mnist_vgg16.pth')
correct = 0.0
total = 0.0
loss_ = 0.0
time.sleep(0.1)
loop = tqdm(enumerate(train_loader), total=len(train_loader))
for i, (images, labels) in loop:
images = images.to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
loss_ += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc = correct / total
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
loop.set_description(f'Epoch Train [{epoch + 1}/{num_epochs}]')
loop.set_postfix(loss=loss_/(i+1), acc=acc)
acc = correct / total
loss_ = loss_ / len(train_loader)
plt_data.get('train_acc').append(acc)
plt_data.get('train_loss').append(loss_)
print(f"Accuracy on train images: {acc * 100}% , Loss: {loss_}")
time.sleep(0.1)
plt_img(plt_data)
plt_acc_loss(plt_data)

train_resnet50.py

import pickle
import time
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
import dataloader
import torch
import torchvision
import torchvision.transforms as transforms
from tqdm import tqdm
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 定义数据转换
transform_data = transforms.Compose([
torchvision.transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
transform_target = None
with open(r"D:\zr\data\chn_mnist\chn_mnist", "rb") as f:
dataset = pickle.load(f)
images = dataset["images"]
targets = dataset["targets"]
index = np.where(targets == 100)
targets[index] = 11
index = np.where(targets == 1000)
targets[index] = 12
index = np.where(targets == 10000)
targets[index] = 13
index = np.where(targets == 100000000)
targets[index] = 14 train_dataset = dataloader.MyDataset(images[:14000, :, :], targets[:14000], transform_data, transform_target)
test_dataset = dataloader.MyDataset(images[-1000:, :, :], targets[-1000:], transform_data, transform_target) # 定义超参数
batch_size = 32
learning_rate = 0.001
num_epochs = 50
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") resnet50 = torchvision.models.resnet50(pretrained=True)
# print(resnet50)
resnet50.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3)
resnet50.fc = (nn.Linear(2048, 15))
# resnet50.add_module('add',nn.Linear(1000,15))
model=resnet50
# model = torch.load(r'D:\zr\projects\utils\chn_mnist_resnet50.pth', map_location=device)
model.to(device)
# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), momentum=0.9, lr=learning_rate)
def plt_img(plt_data):
# 创建数据点
plt.clf()
x = plt_data.get('Epoch')
train_acc = plt_data.get('train_acc')
train_loss = plt_data.get('train_loss')
test_acc = plt_data.get('test_acc')
test_loss = plt_data.get('test_loss')
# 绘制曲线
plt.plot(x, train_acc, label='train_acc')
plt.plot(x, test_acc, label='test_acc')
plt.plot(x, train_loss, label='train_loss')
plt.plot(x, test_loss, label='test_loss')
plt.legend(title='Accuracy And Loss') # 添加图例标题
plt.xlabel('epoch')
# plt.ylabel('rate')
plt.savefig(f'resnet50_{num_epochs}_{batch_size}_{learning_rate}_1.png')
# 显示图形
def plt_acc_loss(plt_data):
plt.clf()
_, axes = plt.subplots(2, 1)
x = plt_data.get('Epoch')
train_acc = plt_data.get('train_acc')
train_loss = plt_data.get('train_loss')
test_acc = plt_data.get('test_acc')
test_loss = plt_data.get('test_loss')
axes[0].plot(x, train_acc, label='train_acc')
axes[0].plot(x, test_acc, label='test_acc')
axes[0].legend(title='Accuracy') # 添加图例标题
axes[0].set_xlabel('epoch')
# axes[0].set_ylabel('rate')
axes[1].plot(x, train_loss, label='train_loss')
axes[1].plot(x, test_loss, label='test_loss')
axes[1].legend(title='Loss')
axes[1].set_xlabel('epoch')
# axes[1].set_ylabel('rate')
# 防止标签被遮挡
plt.tight_layout()
plt.savefig(f'resnet50_{num_epochs}_{batch_size}_{learning_rate}_2.png')
# 训练模型
max_acc = 0.0
plt_data = {
'Epoch': [],
'train_acc': [],
'train_loss': [],
'test_acc': [],
'test_loss': [], } for epoch in range(num_epochs):
plt_data.get('Epoch').append(epoch + 1)
model.eval()
torch.no_grad()
correct = 0.0
total = 0.0
loss_ = 0.0
loop = tqdm(enumerate(test_loader), total=len(test_loader))
for i, (images, labels) in loop:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
loss_ += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc = correct / total
loop.set_description(f'Epoch Test [{epoch + 1}/{num_epochs}]')
loop.set_postfix(loss=loss_/(i+1), acc=acc)
if epoch == 0:
print('原有模型在测试集表现如下:')
acc = correct / total
loss_ = loss_ / len(test_loader)
plt_data.get('test_acc').append(acc)
plt_data.get('test_loss').append(loss_)
print(f"Accuracy on test images: {acc * 100}% , Loss: {loss_}")
if acc > max_acc:
max_acc = acc
torch.save(model, 'chn_mnist_resnet50.pth')
print('The model has been saved as chn_mnist_resnet50.pth')
correct = 0.0
total = 0.0
loss_ = 0.0
time.sleep(0.1)
loop = tqdm(enumerate(train_loader), total=len(train_loader))
for i, (images, labels) in loop:
images = images.to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
loss_ += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc = correct / total
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
loop.set_description(f'Epoch Train [{epoch + 1}/{num_epochs}]')
loop.set_postfix(loss=loss_/(i+1), acc=acc)
acc = correct / total
loss_ = loss_ / len(train_loader)
plt_data.get('train_acc').append(acc)
plt_data.get('train_loss').append(loss_)
print(f"Accuracy on train images: {acc * 100}% , Loss: {loss_}")
time.sleep(0.1)
plt_img(plt_data)
plt_acc_loss(plt_data)

MNIST中文手写数字数据识别的更多相关文章

  1. [Pytorch框架]3.2 MNIST数据集手写数字识别

    文章目录 3.2 MNIST数据集手写数字识别 3.2.1 数据集介绍 3.2.2 手写数字识别 3.2 MNIST数据集手写数字识别 import torch import torch.nn as ...

  2. 机器学习算法(九): 基于线性判别模型的LDA手写数字分类识别

    1.机器学习算法(九): 基于线性判别模型的LDA手写数字分类识别 1.1 LDA算法简介和应用 线性判别模型(LDA)在模式识别领域(比如人脸识别等图形图像识别领域)中有非常广泛的应用.LDA是一种 ...

  3. 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  4. keras实现mnist数据集手写数字识别

    一. Tensorflow环境的安装 这里我们只讲CPU版本,使用 Anaconda 进行安装 a.首先我们要安装 Anaconda 链接:https://pan.baidu.com/s/1AxdGi ...

  5. opencv实现KNN手写数字的识别

    人工智能是当下很热门的话题,手写识别是一个典型的应用.为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务. 预处理一张图片: 首 ...

  6. 分类-MNIST(手写数字识别)

    这是学习<Hands-On Machine Learning with Scikit-Learn and TensorFlow>的笔记,如果此笔记对该书有侵权内容,请联系我,将其删除. 这 ...

  7. caffe的python接口学习(4):mnist实例---手写数字识别

    深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 ...

  8. caffe的python接口学习(4)mnist实例手写数字识别

    以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- im ...

  9. CNN完成mnist数据集手写数字识别

    # coding: utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data d ...

  10. 吴裕雄 PYTHON 神经网络——TENSORFLOW 双隐藏层自编码器设计处理MNIST手写数字数据集并使用TENSORBORD描绘神经网络数据2

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data os.envi ...

随机推荐

  1. 让 GPT-4 来修复 Golang “数据竞争”问题(续) - 每天5分钟玩转 GPT 编程系列(7)

    目录 1. 我以为 2. 阴魂不散的"数据竞争"问题 3. 老规矩,关门放 GPT-4 3.1 复现问题 3.2 让 GPT-4 写一个单元测试 3.3 修复 Wait() 中的逻 ...

  2. java与es8实战之三:Java API Client有关的知识点串讲

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本篇是<java与es8实战>系 ...

  3. 行行AI人才直播第17期:无界AI联合创始人马千里《AIGC,比生产力还多》

    谁也没有想到,短短几个月内,AI就在各行各业掀起了一阵狂风暴雨.ChatGPT.Stable Diffusion.Midjourney--AI已经变得十八般武艺样样精通,不仅能够高效率完成很多日常工作 ...

  4. 1-MySQL数据库的安装和基础语法介绍

    1.MySQL是什么? MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品.它是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最 ...

  5. k8s1.25版本上实践 Ingress-nginx

    背景: 领导要求的最新最新版本k8s...使用ingress-nginx 对外暴露内部服务 环境 节点 master worker 主机/ip calico-master01/192.168.195. ...

  6. 彻底解决Chrome“请停用以开发者模式运行的扩展程序”提示(亲测整合)

    本站有大佬已写较全的解决方案(修改dll文件法) 原文链接 但是本人Chrome76版本不适用,匹配不到提示语,在知乎中找到修改注册表的方法可以解决 原文链接 最后附上一个谷歌访问助手吧 链接: ht ...

  7. ora2pg使用记录

    ora2pg使用记录 前言 这篇文章是我在学习使用ora2pg过程中的学习记录,以便日后遗忘查阅: 诸君也可跟随我的步伐了解一下ora2pg,或可移步如下官方文档参考学习:Ora2Pg : Migra ...

  8. python第6章 学习笔记

    # 第6章 学习笔记## 简介 Python代码在执行时是按照自上向下顺序执行的. 通过流程控制语句,可以改变程序的执行顺序,也可以让指定的程序反复执行多次 流程控制语句分成两大类:条件判断语句,循环 ...

  9. 用MMCls训练手势模型

    import os import json import mmcv import time from mmcv import Config from mmdet.apis import inferen ...

  10. ELK日志企业案例:(5.3版本)

    1.shell三剑客同居.分析nginx日志: 1)在企业生产环境中,日志内容主要用来做什么? 日志内容主要用于运维人员.开发人员.DBA排错软件服务故障的,因为通过日志内容能够第一时间找到软件服务的 ...