Description

Link.

区间众数出现次数强制在线。

Solution

三个 YLST 中比较清新的一个分块。

比较重点的地方在于询问散块的处理。

先离散化一下序列。

我们首先预处理出来一个 vector 数组 fur[i]fur[i] 里面依次存的是所有 isa[i](即这个序列,详见代码)的出现位置,再预处理一个 pos[i] 表示在当前第 \(i\) 位时 fur[i] 的大小也就是一共出现了多少个 isa[i]。由于 vector 的下标是从 \(0\) 开始的,所以所有的 pos[i] 都需要减个一。

然后询问处理整块的时候,我们先假设当前询问的区间是 [opl,opr],然后把当前询问的答案 res 先置为 App[bel[opl] + 1][bel[opr] - 1]

然后来考虑散块,在处理出的 vector 数组中判断即可。

设散块处理到数 isa[i],那么如果存在 pos[i] + res <= fur[isa[i]].size() - 1fur[isa[i]][pos[i] + res] <= opr,那么则说明这个数出现了至少 res + 1 次,将 res 加一即可。

由于 res 最多加不超过 \(\Theta(2\sqrt{n})\) 次,所以复杂度是对的。

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue> using namespace std; const int MAXN = 5e5 + 5, MAXM = 720 + 5; char buf[1 << 21], *p1 = buf, *p2 = buf;
#define getchar( ) ( p1 == p2 && ( p2 = ( p1 = buf ) + fread( buf, 1, 1 << 21, stdin ), p1 == p2 ) ? EOF : *p1 ++ ) template<typename _T>
void read( _T &x ){
x = 0; char c = getchar( ); _T f = 1;
while( c < '0' || c > '9' ){ if( c == '-' ) f = -1; c = getchar( ); }
while( c >= '0' && c <= '9' ){ x = ( x << 3 ) + ( x << 1 ) + ( c & 15 ); c = getchar( ); }
x *= f;
} template<typename _T>
void write( _T x ){
if( x < 0 ){ putchar( '-' ); x = -x; }
if( x > 9 ){ write( x / 10 ); }
putchar( x % 10 + '0' );
} template<typename _T>
void swapp( _T &one, _T &another ){ int temp = one; one = another; another = temp; } template<typename _T>
_T MIN( _T one, _T another ){ return one > another ? another : one; } template<typename _T>
_T MAX( _T one, _T another ){ return one > another ? one : another; } int N, M;
int cube, each, kase, isa[MAXN], cnt[MAXN], pos[MAXN], vis[MAXN], bel[MAXN];
int lps[MAXM], rps[MAXM], app[MAXM], App[MAXM][MAXM];
vector<int> disc, fur[MAXN]; int getID( int x ){ return lower_bound( disc.begin( ), disc.end( ), x ) - disc.begin( ) + 1; } void build( ){
for( int i = 1; i <= cube; ++ i ){
kase ++;
for( int j = lps[i]; j <= rps[i]; ++ j ){
if( vis[isa[j]] != kase ) cnt[isa[j]] = 0;
cnt[isa[j]] ++; app[i] = MAX( app[i], cnt[isa[j]] );
vis[isa[j]] = kase;
}
}
memset( cnt, 0, sizeof( cnt ) );
for( int i = 1; i <= cube; ++ i ){
kase ++;
for( int j = i; j <= cube; ++ j ){
App[i][j] = App[i][j - 1];
for( int k = lps[j]; k <= rps[j]; ++ k ){
if( vis[isa[k]] != kase ) cnt[isa[k]] = 0;
cnt[isa[k]] ++; App[i][j] = MAX( App[i][j], cnt[isa[k]] );
vis[isa[k]] = kase;
}
}
}
memset( cnt, 0, sizeof( cnt ) );
} int query( int opl, int opr ){
if( bel[opl] == bel[opr] ){
int res = 0; kase ++;
for( int i = opl; i <= opr; ++ i ){
if( vis[isa[i]] != kase ) cnt[isa[i]] = 0;
cnt[isa[i]] ++; res = MAX( res, cnt[isa[i]] );
vis[isa[i]] = kase;
}
return res;
}
int res = 0;
// res = App[bel[opl] + 1][bel[opr] - 1];
for( int i = bel[opl] + 1; i < bel[opr]; ++ i ) res += app[i];
// for( int i = bel[opl] + 1; i < bel[opr]; ++ i ) res += App[i][i];
for( int i = opl; i <= rps[bel[opl]]; ++ i ){
int lim = fur[isa[i]].size( ) - 1;
while( pos[i] + res <= lim && fur[isa[i]][pos[i] + res] <= opr ) res ++;
}
for( int i = lps[bel[opr]]; i <= opr; ++ i ){
while( pos[i] - res >= 0 && fur[isa[i]][pos[i] - res] >= opl ) res ++;
}
return res;
} signed main( ){
read( N ); read( M ); each = 720; cube = ( N - 1 ) / each + 1;
for( int i = 1; i <= N; ++ i ){ read( isa[i] ); disc.push_back( isa[i] ); }
sort( disc.begin( ), disc.end( ) );
disc.erase( unique( disc.begin( ), disc.end( ) ), disc.end( ) );
for( int i = 1; i <= N; ++ i ){
isa[i] = getID( isa[i] );
fur[isa[i]].push_back( i );
pos[i] = fur[isa[i]].size( ) - 1;
}
for( int i = 1; i <= cube; ++ i ){
lps[i] = rps[i - 1] + 1; rps[i] = rps[i - 1] + each;
if( i == cube ) rps[i] = N;
for( int j = lps[i]; j <= rps[i]; ++ j ) bel[j] = i;
}
build( );
int Ans = 0, opl, opr;
while( M -- > 0 ){
read( opl ); read( opr ); opl ^= Ans; opr ^= Ans;
Ans = 0; if( opl > opr ) swapp( opl, opr );
write( Ans = query( opl, opr ) ); putchar( '\n' );
}
return 0;
}

Solution -「洛谷 P5048」「YunoOI 2019 模拟赛」Yuno loves sqrt technology III的更多相关文章

  1. [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...

  2. 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)

    传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...

  3. 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)

    题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...

  4. Luogu P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III 分块

    这才是真正的$N\sqrt{N}$吧$qwq$ 记录每个数$vl$出现的位置$s[vl]$,和每个数$a[i]=vl$是第几个$vl$,记为$P[i]$,然后预处理出块$[i,j]$区间的答案$f[i ...

  5. P5048 [[Ynoi2019模拟赛]Yuno loves sqrt technology III]

    为什么我感觉这题难度虚高啊-- 区间众数的出现次数- 计算器算一下 \(\sqrt 500000 = 708\) 然后我们发现这题的突破口? 考虑分块出来[L,R]块的众数出现个数 用 \(\text ...

  6. 洛谷 P5046 [Ynoi2019 模拟赛] Yuno loves sqrt technology I(分块+卡常)

    洛谷题面传送门 zszz,lxl 出的 DS 都是卡常题( 首先由于此题强制在线,因此考虑分块,我们那么待查询区间 \([l,r]\) 可以很自然地被分为三个部分: 左散块 中间的整块 右散块 那么这 ...

  7. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  8. 「 洛谷 」P2768 珍珠项链

    珍珠项链 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 题目来源 「 洛谷 」P2768 珍珠项链 ...

  9. 「 洛谷 」P4539 [SCOI2006]zh_tree

    小兔的话 推荐 小兔的CSDN [SCOI2006]zh_tree 题目限制 内存限制:250.00MB 时间限制:1.00s 标准输入输出 题目知识点 思维 动态规划 \(dp\) 区间\(dp\) ...

  10. 「 洛谷 」P2151 [SDOI2009]HH去散步

    小兔的话 欢迎大家在评论区留言哦~ HH去散步 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入 标准输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 ...

随机推荐

  1. c# 如何将枚举以下拉数据源的形式返回给前端

    前言: 相信各位有碰到过与我类似的问题,当表中存一些状态的字段,无非以下几种形式1.直接写死 如: 正常:1,异常:2 ,还有一种则是写在字典中,再或者就是加在枚举上,前两者对于返回下拉数据源来说比较 ...

  2. SQL Server 日志传输还原作业执行缓慢

    目录 情景 故障定位 VLF 对 Restore 的影响 问题 解决方案 方案1 方案 2 参考资料 情景 IP 角色 192.168.1.61 Primary 192.168.1.59 Second ...

  3. Python进行大文件的备份

    Python进行大文件的备份的思路:每次仅从原文件中读取指定字符的内容后写入新文件,然后循环操作. def copy_big_file(): # 接收用户输入的文件名 old_file = input ...

  4. [Qt开发]一口气搞懂串口通信

    好多小鳄鱼 一.关于串口通信: Qt的确有自己的串口通信类,就是QSerialPort,但是我们在使用过程中因为要更加定制化的使用串口通信类减小开发的难度,所以我们会提供一个串口通信类,也就是这个Se ...

  5. 基于 canal 的 RDS Mysql 数据实时同步到 Es 服务器

    背景 考虑到我们的数据在密码变大,与数据分析的需求,前面我们是一直在使用 Sphinx 来做全文搜索.主要也是这块我们也没有更为核心的Sphinx 开发人员,从而我们在这块的使用上,一直都还是还有比较 ...

  6. ElasticSearch的使用和介绍

    1.概述 功能 Elasticsearch 是一个分布式的 RESTful 搜索和分析引擎,可用来集中存储您的数据,以便您对形形色色.规模不一的数据进行搜索.索引和分析. 例如: 在电商网站搜索商品 ...

  7. 宋红康-Java基础复习笔记详细版

    Java基础复习笔记 第01章:Java语言概述 1. Java基础学习的章节划分 第1阶段:Java基本语法 Java语言概述.Java的变量与进制.运算符.流程控制语句(条件判断.循环结构).br ...

  8. 在linux上启动arthas报“Can not find java process”

    发生背景 完整报错信息: [***@localhost ~]$ java -jar arthas-boot.jar [INFO] JAVA_HOME: /usr/lib/jvm/java-1.8.0- ...

  9. 性能优化之window.onload

    前言 最近在做一些性能优化相关的工作,相信大家在工作过程中也会遇到一些性能优化相关的场景,这对于前端开发者来讲是一项加分技能.为了我们的用户在使用我们的产品时能够有一个非常好的体验,我们需要对页面进行 ...

  10. .NET周刊【7月第2期 2023-07-09】

    由于这周比较忙,只给出了标题和链接,没有具体的简介. 另外根据粉丝朋友的反馈,".NET周报" 更名为 ".NET周刊",希望大家喜欢 : ) 国内文章 Ava ...