题解 CF1739B
题目大意:
有一个非负整数序列 \(A\),定义序列 \(D\) 是序列 \(A\) 的绝对值差分序列,问给定序列 \(D\),能否求出唯一的序列 \(A\),若不能,输出 \(-1\),否则输出序列 \(A\)。
题目分析:
因为属于差分序列,所以我们不难得出序列 \(D\) 的前缀和序列 \(S\) 就是序列 \(A\) 的一种。
那么不能得出唯一解得情况就很好想了,如果 \(S_{i-1}+(-D_i) \ge 0\),那么就说明有多个序列 \(A\),理由如下:
因为 \(D_i\) 是 \(A_{i-1}-A_i\) 的绝对值,所以原差分序列中 \(D_i\) 的位置可正可负,如果 \(S_{i-1}+(-D_i) < 0\),则说明了原差分序列上 \(D_i\) 的位置肯定为非负整数(因为序列 \(A\) 是由非负整数构成的),反之则说明原差分序列上 \(D_i\) 的位置的正负性不影响序列 \(A\) 是一个非负整数序列,故此时序列 \(A\) 有多种。
代码实现:
#include <bits/stdc++.h>
using namespace std;
int main() {
int T;
cin >> T;
while (T--) {
int n;
int d[200] = {};
cin >> n;
for (int i = 1; i <= n; i++)
cin >> d[i];
bool inc = 1;
int a[200] = {};
a[1] = d[1];
for (int i = 2; i <= n; i++)
a[i] = a[i - 1] + d[i];
for (int i = 2; i <= n; i++) {
if (a[i - 1] >= d[i] && d[i]) {
cout << -1 << endl;
inc = 0;
break;
}
}
if (!inc)
continue;
for (int i = 1; i <= n; i++)
cout << a[i] << ' ';
cout << endl;
}
return 0;
}
题解 CF1739B的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
- JSOI2016R3 瞎BB题解
题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...
随机推荐
- go 判断文件是否存在,并创建
1 package main 2 3 import ( 4 "fmt" 5 "os" 6 ) 7 8 //判断文件夹是否存在 9 func PathExists ...
- pandas 某列不为空的行
df = df[df['my_col'].notnull()]
- linux vim 无权限保存解决办法
通常在vim编辑文件时往往会忘记文件权限问题, 在wq保存时发现权限不足,这时候输入以下命令解决: w! sudo tee % 命令解析: w! {cmd} 指示 保存时执行额外命令: tee 用于将 ...
- WPF自定义控件之消息提示
创建消息提示控件 internal class Message : ContentControl { public int Time { get; set; } [Bindable(true)] pu ...
- XAML格式化工具:XAML Styler
XAML格式化的意义 在开发WPF应用过程中,编写XAML时需要手动去缩进或者换行,随着时间的推移或者参与开发的人增多,XAML文件内容的格式会越来越乱.要么属性全都写在一行,内容太宽一屏无法完整展现 ...
- nacos适配SqlServer、Oracle
继上文<nacos适配达梦.瀚高.人大金仓数据库及部分源码探究>后补充nacos适配SqlServer.Oracle的贴码,主要区别是SqlServer.Oracle的分页SQL有点不一样 ...
- 《CTFshow-Web入门》06. Web 51~60
@ 目录 web51 题解 web52 题解 原理 web53 题解 原理 web54 题解 原理 web55 题解 原理 web56 题解 原理 web57 题解 原理 web58 题解 原理 we ...
- 文心一言 VS 讯飞星火 VS chatgpt (85)-- 算法导论8.2 2题
二.用go语言,试证明 COUNTING-SORT 是稳定的. 文心一言: 要证明 COUNTING-SORT 是稳定的,我们需要证明在排序过程中,具有相同值的元素在排序后仍保持其原始的相对顺序.CO ...
- 文盘Rust——子命令提示,提高用户体验
上次我们聊到 CLI 的领域交互模式.在领域交互模式中,可能存在多层次的子命令.在使用过程中如果全评记忆的话,命令少还好,多了真心记不住.频繁 --help 也是个很麻烦的事情.如果每次按 'tab' ...
- 图解 LeetCode 算法汇总——回溯
本文首发公众号:小码A梦 回溯算法是一种常见的算法,常见用于解决排列组合.排列问题.搜索问题等算法,在一个搜索空间中寻找所有的可能的解.通过向分支不断尝试获取所有的解,然后找到合适的解,找完一个分支后 ...