相关:

python中numpy.random.seed设置随机种子是否影响子进程

============================================

代码:

from ale_python_interface import ALEInterface
import numpy as np
np.random.seed(1111)
import cv2
import time filename = "atari_roms" + "/" + "pong" + ".bin" ale_int = ALEInterface()
ale_int.setInt(b"random_seed", 1111)
ale_int.setFloat(b"repeat_action_probability", 0.0)
ale_int.setInt(b"frame_skip", 1)
ale_int.setBool(b"color_averaging", False)
ale_int.loadROM(str.encode(filename))
num_actions = len(ale_int.getMinimalActionSet())
legal_actions = ale_int.getMinimalActionSet()
h, w = ale_int.getScreenDims()
gray_screen = np.zeros((h, w, 1), dtype=np.uint8) ale_int.reset_game() pre_screen = None
for i in range(30):
ale_int.act(legal_actions[0])
ale_int.getScreenGrayscale(gray_screen) for i in range(1000):
pre_screen = np.copy(gray_screen)
ale_int.act(legal_actions[np.random.randint(len(legal_actions))])
ale_int.getScreenGrayscale(gray_screen)
# cv2.imshow("Example Image", gray_screen)
# time.sleep(0.01) # print(gray_screen)
det = np.sum(pre_screen - gray_screen)
print(det, ale_int.game_over())

运行结果:

=============================

对比代码:

from multiprocessing import Process

from ale_python_interface import ALEInterface
import numpy as np
np.random.seed(1111)
# import cv2
# import time filename = "atari_roms" + "/" + "pong" + ".bin" ale_int = ALEInterface()
ale_int.setInt(b"random_seed", 1111)
ale_int.setFloat(b"repeat_action_probability", 0.0)
ale_int.setInt(b"frame_skip", 1)
ale_int.setBool(b"color_averaging", False)
ale_int.loadROM(str.encode(filename))
num_actions = len(ale_int.getMinimalActionSet())
legal_actions = ale_int.getMinimalActionSet()
h, w = ale_int.getScreenDims()
gray_screen = np.zeros((h, w, 1), dtype=np.uint8) ale_int.reset_game() class NN(Process):
def __init__(self, id, ale):
super(NN, self).__init__()
self.id = id
self.ale = ale
def run(self):
super(NN, self).run() ale_int = self.ale num_actions = len(ale_int.getMinimalActionSet())
legal_actions = ale_int.getMinimalActionSet()
h, w = ale_int.getScreenDims()
gray_screen = np.zeros((h, w, 1), dtype=np.uint8) pre_screen = None
for i in range(30):
ale_int.act(legal_actions[0])
ale_int.getScreenGrayscale(gray_screen) for i in range(1000):
pre_screen = np.copy(gray_screen)
ale_int.act(legal_actions[np.random.randint(len(legal_actions))])
ale_int.getScreenGrayscale(gray_screen)
# cv2.imshow("Example Image", gray_screen)
# time.sleep(0.01) # print(gray_screen)
det = np.sum(pre_screen - gray_screen)
print(det, ale_int.game_over()) ps = [NN(i, ale_int) for i in range(1)]
for p in ps:
p.start() for p in ps:
p.join()

运行结果:

PS:

可以看到,在python中子进程生成时会copy父进程中的对象,哪怕是atari游戏这种调用C语言扩展模块的对象也会被copy状态给子进程,这个和其他python中对象一样;这个特点和python中numpy.random.seed设置随机种子是否影响子进程相一致。

注意,上面代码中设置numpy和atari游戏的随机种子状态的代码为:

PS:

扩展一下,正因为python在生成子进程时会copy父进程状态这一特点,所以在生成子进程时我们需要在子进程中设置随机种子,并且在子进程中设置随机种子时要保证各个子进程被传入一个不同的数值;要注意在各个子进程中time.time()的数值也都是相同的,如果不能从父进程为各个子进程传入一个不同的数值,那么各个进程运行起来所使用的随机种子会是一致的,这样会影响最终的运算结果。给出具体例子:

要注意,在不同子进程生成过程中,这个参数 actor_id 的数值是不同的,以此来保证各个子进程会有不同的随机种子。

============================================

强化学习中子进程调用atari游戏是否受父进程中设置的随机种子影响的更多相关文章

  1. 基于Keras的OpenAI-gym强化学习的车杆/FlappyBird游戏

    强化学习 课程:Q-Learning强化学习(李宏毅).深度强化学习 强化学习是一种允许你创造能从环境中交互学习的AI Agent的机器学习算法,其通过试错来学习.如上图所示,大脑代表AI Agent ...

  2. ICML论文|阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏

    今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战&g ...

  3. Linux Guard Service - 守护进程的作用、用途、父进程标识的特点

    让test2直接成为守护进程 [root@localhost 02]# cat test2.c //test2 #include<stdio.h> #include<unistd.h ...

  4. PyQt学习随笔:Model/View开发时在view数据项中设置不同角色数据的方法

    在往Model中通过QStandardItem等类插入数据项时,除了实际插入的存储数据,还可以设置不同角色(请参考<PyQt学习随笔:Model/View中诸如DisplayRole的数据角色及 ...

  5. 强化学习论文(Scalable agent alignment via reward modeling: a research direction)

     原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== ...

  6. [Reinforcement Learning] 强化学习介绍

    随着AlphaGo和AlphaZero的出现,强化学习相关算法在这几年引起了学术界和工业界的重视.最近也翻了很多强化学习的资料,有时间了还是得自己动脑筋整理一下. 强化学习定义 先借用维基百科上对强化 ...

  7. 用深度强化学习玩FlappyBird

    摘要:学习玩游戏一直是当今AI研究的热门话题之一.使用博弈论/搜索算法来解决这些问题需要特别地进行周密的特性定义,使得其扩展性不强.使用深度学习算法训练的卷积神经网络模型(CNN)自提出以来在图像处理 ...

  8. Android(java)学习笔记160:Framework运行环境之 Android进程产生过程

    1.前面Android(java)学习笔记159提到Dalvik虚拟机启动初始化过程,就下来就是启动zygote进程: zygote进程是所有APK应用进程的父进程:每当执行一个Android应用程序 ...

  9. 强化学习(十)Double DQN (DDQN)

    在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他 ...

  10. 强化学习(九)Deep Q-Learning进阶之Nature DQN

    在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning ...

随机推荐

  1. 使用 OpenTelemetry 构建可观测性 06 - 生态系统

    过去的五篇文章讨论了如何使用 OpenTelemetry 来构建可观测性的技术细节.我认为在本博文系列的结尾介绍有关 OTel 生态系统的信息,为读者提供更全面的了解非常重要.OpenTelemetr ...

  2. Cursor是什么?基于ChatGPT代码编辑器的cursor如何使用?VS Code如何迁移到Cursor的步骤

    Cursor是什么 Cursor 是一个基于 Visual Studio Code(VS Code)技术构建的高级代码编辑器,专为提高编程效率并更深度地整合 AI 功能而设计.它不仅继承了 VS Co ...

  3. 基于redis的选主功能设计

    需求背景 在JAVA应用开发过程中,越来越多的项目采用了微服务架构,而采用微服务架构最直接作用是可以实现业务层解耦,有利于研发团队可以从业务层面进行划分,比如某几个人的小团队负责某几个微服务,总之,从 ...

  4. 每天打卡一小时 第三十一天 PTA520钻石 争霸赛

    第一题 源代码 #include<iostream> using namespace std; int main() { int n; cin>>n; cout<< ...

  5. 实验一:Wireshark工具的使用

    1.0 [实验目的] 了解Wireshark.TCP协议的概念,掌握Wireshark抓包工具的使用.FTP的搭建和登录,学会对Wireshark抓包结果的分析. 2.0[知识点] Wireshark ...

  6. CSS 属性计算

    CSS 属性计算过程 你是否了解 CSS 的属性计算过程呢? 有的同学可能会讲,CSS属性我倒是知道,例如: p{ color : red; } 上面的 CSS 代码中,p 是元素选择器,color ...

  7. Jenkins从github拉取项目,github有更新,自动进行构建,实现自动集成

    使用git之前的准备工作 1. 搭建Jenkins的机器上,有安装git,配置git的安装地址,Jenkins配置Git的安装地址 2. Global Tool Configuration - > ...

  8. openfly:基于nginx的4层代理管理平台

    简介 作者:京城郭少 基于nginx的4层代理管理平台 支持的功能: 被动健康检查 白名单 include导入文件 哈希 backup冗余互备 weight权重 注释 ...... 部署openfly ...

  9. java实现微信登录

    前言 上一篇做了php的微信登录,所以也总结一下Java的微信授权登录并获取用户信息这个功能的开发流程. 配置 配置什么的就不多说了,详细的配置可以直接前往我上一篇查看. https://www.cn ...

  10. 基于附带Attention机制的seq2seq模型架构实现英译法的案例

    模型架构 先上图 我们这里选用GRU来实现该任务,因此上图的十个方框框都是GRU块,如第二张图,放第一张图主要是强调编码器的输出是作用在解码器每一次输入的观点,具体的详细流程图将在代码实现部分给出. ...