Pandas分组聚合
groupby分组操作详解
在数据分析中,经常会遇到这样的情况:根据某一列(或多列)标签把数据划分为不同的组别,然后再对其进行数据分析。比如,某网站对注册用户的性别或者年龄等进行分组,从而研究出网站用户的画像(特点)。在 Pandas 中,要完成数据的分组操作,需要使用 groupby() 函数,它和 SQL 的GROUP BY
操作非常相似。
在划分出来的组(group)上应用一些统计函数,从而达到数据分析的目的,比如对分组数据进行聚合、转换,或者过滤。这个过程主要包含以下三步:
- 拆分(Spliting):表示对数据进行分组;
- 应用(Applying):对分组数据应用聚合函数,进行相应计算;
- 合并(Combining):最后汇总计算结果。
下面对 groupby() 函数的应用过程进行具体的讲解。
创建DataFrame对象
首先我们创建一个 DataFrame 对象,下面数据描述了某班学生,计算机选修课的考试成绩:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
print(df)
输出结果:
Name score option_course
0 John 82 C#
1 Helen 98 Python
2 Sona 91 Java
3 Ella 87 C
创建groupby分组对象
使用 groupby() 可以沿着任意轴分组。您可以把分组时指定的键(key)作为每组的组名,方法如下所示:
- df.groupby("key")
- df.groupby("key",axis=1)
- df.groupby(["key1","key2"])
通过上述方法对 DataFrame 对象进行分组操作:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
print(df)
#生成分组groupby对象
print(df.groupby('score'))
输出结果:
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000021DE9A89640>
查看分组结果
1) groups查看分组结果
通过调用groups
属性查看分组结果:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
print(df.groupby('score').groups)
输出结果:
{82: Int64Index([0], dtype='int64'),
87: Int64Index([3], dtype='int64'),
91: Int64Index([2], dtype='int64'),
98: Int64Index([1], dtype='int64')}
2) 多个列标签分组
当然也可以指定多个列标签进行分组,示例如下:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
print(df.groupby(['Name','score']).groups)
输出结果:
{('Ella', 87): Int64Index([3], dtype='int64'),
('Helen', 98): Int64Index([1], dtype='int64'),
('John', 82): Int64Index([0], dtype='int64'),
('Sona', 91): Int64Index([2], dtype='int64')}
通过 get_group() 方法可以选择组内的具体数据项:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#根据score来分组
grouped=df.groupby('score')
#根据对应组的数据值,选择一个组
print(grouped.get_group(91))
输出结果:
Name score option_course
2 Sona 91 Java
遍历分组数据
通过以下方法来遍历分组数据,示例如下:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
grouped=df.groupby('score')
for label, option_course in grouped:
#其中key代表分组后字典的键,也就是score
print(label)
#字典对应的值选修的科目
print(option_course)
输出结果:
82
Name score option_course
0 John 82 C#
87
Name score option_course
3 Ella 87 C
91
Name score option_course
2 Sona 91 Java
98
Name score option_course
1 Helen 98 Python
如上所示, groupby 对象的组名称与 score 中的的元素值一一对应。
应用聚合函数
当您在创建 groupby 对象时,通过 agg() 函数可以对分组对象应用多个聚合函数:
import pandas as pd
import numpy as np
data = {'name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)grouped=df.groupby('name')
#应用一个聚合函数求均值
print(grouped['score']).agg(np.mean)
输出结果:
name
Ella 87
Helen 98
John 82
Sona 91
Name: score, dtype: int64
当然,您也可以一次性应有多个聚合函数,示例如下:
import pandas as pd
import numpy as np
data = {'name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
grouped=df.groupby('name')
print(grouped['score'].agg([np.size,np.mean,np.std]))
输出结果:
size mean std
name
Ella 1 87 NaN
Helen 1 98 NaN
John 1 82 NaN
Sona 1 91 NaN
组的转换操作
在组的行或列上可以执行转换操作,最终会返回一个与组大小相同的索引对象。示例如下:
import pandas as pd
import numpy as np
df = pd.DataFrame({'种类':['水果','水果','水果','蔬菜','蔬菜','肉类','肉类'],
'产地':['朝鲜','中国','缅甸','中国','菲律宾','韩国','中国'],
'水果':['橘子','苹果','哈密瓜','番茄','椰子','鱼肉','牛肉'],
'数量':[3,5,5,3,2,15,9],
'价格':[2,5,12,3,4,18,20]})
#分组求均值,水果、蔬菜、肉类#对可执行计算的数值列求均值
print(df.groupby('种类').transform(np.mean))
#transform()直接应用demean,实现去均值操作
demean = lambda arr:arr-arr.mean()
print(df.groupby('种类').transform(demean))
#自定义函数# 返回分组的前n行数据
def get_rows(df,n):
#从1到n行的所有列
return df.iloc[:n,:]
#分组后的组名作为行索引
print(df.groupby('种类').apply(get_rows,n=1))
输出结果:
数量 价格
0 4.333333 6.333333
1 4.333333 6.333333
2 4.333333 6.333333
3 2.500000 3.500000
4 2.500000 3.500000
5 12.000000 19.000000
6 12.000000 19.000000
数量 价格
0 -1.333333 -4.333333
1 0.666667 -1.333333
2 0.666667 5.666667
3 0.500000 -0.500000
4 -0.500000 0.500000
5 3.000000 -1.000000
6 -3.000000 1.000000
种类 产地 水果 数量 价格
种类
水果 0 水果 朝鲜 橘子 3 2
肉类 5 肉类 韩国 鱼肉 15 18
蔬菜 3 蔬菜 中国 番茄 3 3
组的数据过滤操作
通过 filter() 函数可以实现数据的筛选,该函数根据定义的条件过滤数据并返回一个新的数据集。
下面,筛选出参加比赛超过两次的球队(包含两次):
import pandas as pd
import numpy as np
data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[874,789,863,663,741,802,756,788,694,701,812,698]}
df = pd.DataFrame(data)
#定义lambda函数来筛选数据
print (df.groupby('Team').filter(lambda x: len(x) >= 2))
输出结果:
Team Rank Year Points
0 Riders 1 2014 874
1 Riders 2 2015 789
4 Kings 3 2014 741
6 Kings 1 2016 756
7 Kings 1 2017 788
8 Riders 2 2016 694
11 Riders 2 2017 698
Pandas分组聚合的更多相关文章
- Pandas 分组聚合
# 导入相关库 import numpy as np import pandas as pd 创建数据 index = pd.Index(data=["Tom", "Bo ...
- Python Pandas分组聚合
Pycharm 鼠标移动到函数上,CTRL+Q可以快速查看文档,CTR+P可以看基本的参数. apply(),applymap()和map() apply()和applymap()是DataFrame ...
- Pandas 分组聚合 :分组、分组对象操作
1.概述 1.1 group语法 df.groupby(self, by=None, axis=0, level=None, as_index: bool=True, sort: bool=True, ...
- pandas分组聚合案例
美国2012年总统候选人政治献金数据分析 导入包 import numpy as np import pandas as pd from pandas import Series,DataFrame ...
- DataAnalysis-Pandas分组聚合
title: Pandas分组聚合 tags: 数据分析 python categories: DataAnalysis toc: true date: 2020-02-10 16:28:49 Des ...
- pandas分组和聚合
Pandas分组与聚合 分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程:s ...
- Pandas分组运算(groupby)修炼
Pandas分组运算(groupby)修炼 Pandas的groupby()功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚. 今天,我们一起来领略下groupby() ...
- Atitit 数据存储的分组聚合 groupby的实现attilax总结
Atitit 数据存储的分组聚合 groupby的实现attilax总结 1. 聚合操作1 1.1. a.标量聚合 流聚合1 1.2. b.哈希聚合2 1.3. 所有的最优计划的选择都是基于现有统计 ...
- ORACLE字符串分组聚合函数(字符串连接聚合函数)
ORACLE字符串连接分组串聚函数 wmsys.wm_concat SQL代码: select grp, wmsys.wm_concat(str) grp, 'a1' str from dual un ...
- SSRS 系列 - 使用带参数的 MDX 查询实现一个分组聚合功能的报表
SSRS 系列 - 使用带参数的 MDX 查询实现一个分组聚合功能的报表 SSRS 系列 - 使用带参数的 MDX 查询实现一个分组聚合功能的报表 2013-10-09 23:09 by BI Wor ...
随机推荐
- netstat 命令查看端口状态详解
转载请注明出处: netstat 可以查看服务器当前端口列表及指定端口的连接状态等: -t : 指明显示TCP端口,t是TCP的首字母. -u : 指明显示UDP端口,u是UDP的首字母 -p : 显 ...
- springboot启动流程 (1) 流程概览
本文将通过阅读源码方式分析SpringBoot应用的启动流程,不涉及Spring启动部分(有相应的文章介绍). 本文不会对各个流程做展开分析,后续会有文章介绍详细流程. SpringApplicati ...
- 存储器(Memory)
存储器(Memory) 通信领域中有很多重要的部分,比如基带.射频芯片,存储器. 1.存储器是什么?和内存如何进行区分? 作为数据的载体,存储器是任何电子设备中都必不可少的单元.由于存储器之间相似的名 ...
- [kubernetes]服务健康检查
前言 进程在运行,但是不代表应用是正常的,对此pod提供的探针可用来检测容器内的应用是否正常.k8s对pod的健康状态可以通过三类探针来检查:LivenessProbe.ReadinessProbe和 ...
- 【MMC子系统】 一、MMC/SD/SDIO介绍
1.前言 该节学习Linux Kernel的MMC子系统,也称为块设备驱动,正如其名,与字符驱动相比,MMC子系统以块为单位进行操作. 同时,由于MMC Card.SD Card.SDIO Card等 ...
- [转帖]How to Resolve ORA-3136 Inbound Connection Timed Out
https://logic.edchen.org/how-to-resolve-ora-3136-inbound-connection-timed-out/#:~:text=ORA-03136%3A% ...
- [转帖]Intel AVX 系列指令基础介绍
https://zhuanlan.zhihu.com/p/437657452 一.发展背景 1993年,Intel公司推出了奔腾处理器,该类型处理器拥有两条执行流水线,和当时的处理器相比,可以同时执行 ...
- [转帖]docker-compose完全清除
https://www.cnblogs.com/gelandesprung/p/12112420.html#:~:text=docker-compose%E5%AE%8C%E5%85%A8%E6%B8 ...
- [转帖]【JVM】堆内存与栈内存详解
堆和栈的定义 java把内存分成栈内存和堆内存. (1)栈内存 在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配. 当在一段代码块中定义一个变量时,java就在栈中为这个变量分 ...
- 获取特定端口java进程的路径的shell脚本
获取特定端口java进程的路径的shell脚本 ll /proc/`lsof -i:5200 |grep ^java |awk '{print $2}' |uniq` |grep cwd |cut - ...