KMP算法与一个经典概率问题
考虑一个事件,它有两种概率均等的结果。比如掷硬币,出现正面和反面的机会是相等的。现在我们希望知道,如果我不断抛掷硬币,需要多长时间才能得到一个特定的序列。
序列一:反面、正面、反面
序列二:反面、正面、正面
首先,我反复抛掷硬币,直到最近的三次抛掷结果形成序列一,然后我记下这次我抛掷了多少次才得到了我要的序列。重复执行这个过程,我可以算出得到序列一平均需要的抛掷次数。同样地,反复抛掷硬币直到序列二产生,它所需要的次数也有一个平均值。你认为这两个平均值哪一个大哪一个小?换句话说,出现序列一平均所需的抛掷次数少还是出现序列二平均需要的次数少?
大多数人会认为,两个序列会以同样快的速度出现,因为在所有“正”和“反”的8种三元组合里,“反正反”和“反正正”各占1/8,其概率是均等的。而事实上,我们将会看到掷出序列二所需的次数更少一些。不妨考虑这样一个问题:在由“正”和“反”构成的n位01序列中,有多少个序列以序列一结尾但之前不曾出现过序列一?有多少个序列以序列二结尾但之前不曾出现过序列二?当n比较小时,两者答案是一样的(例如n=3时符合要求的情况都是唯一的),但到后来n越大时,两者的差距越明显:后者的个数总比前者的个数要多一些。不妨看一看n=6的情况。对于序列一,只有以下5个序列是符合要求的:
- 反反反反正反
- 反正正反正反
- 正正正反正反
- 正反反反正反
- 正正反反正反
但对于序列二来说,符合条件的序列就有7个:
- 反反反反正正
- 反正反反正正
- 反反正反正正
- 正反反反正正
- 正正反反正正
- 正正正反正正
- 正反正反正正
你可以通过计算机编程枚举,计算一下n为其它值的情况。计算结果和刚才也一样:在n位01序列中,以序列二结尾但之前不含序列二的情况不会少于以序列一结尾但之前不含序列一的情况。这说明,抛掷第n次硬币后恰好出现了序列二,其概率不会小于恰好出现序列一的概率。显然,当n渐渐增大时,这个概率应该呈下降趋势;同时,随着n的增长,两个序列各自出现的概率由相等开始慢慢拉开差距,第n次抛掷产生序列二的概率下降得要缓慢一些,或者说更多的情况集中发生在n更小的时候。因此总的来说,出现序列二所需要的抛掷硬币次数的期望值更小。
虽然我们通过一系列的观察验证了这个结论,并且我们也相信这个结论是正确的(虽然没有严格的证明),但我们仍然不是很接受这个结论。这种情况是有悖于我们的直觉的,它与我们的生活经验不相符合。此刻,我们迫切需要一个解释,来说明这种出人意料的反常现象产生的原因。
如果不亲自做几次试验的话,你很难体会到这种微妙的差距。考虑整个游戏的实际过程,“反正正”序列显然会出现得更早一些。假如某一次我们得到了序列“反正”。如果我们需要的是“反正反”序列,那么下一次抛掷结果为反面将结束本轮的抛掷,而下一次是正面则前功尽弃,你必须再次从零开始。如果我们需要的是“反正正”序列,那么下一次抛掷结果为正面将结束本轮的抛掷,而下一次是反面的话我至少不会惨到一切归零,这相当于我已经有了一个反面作为新的开头,只需再来两个正面即可。这样看的话,提前掷出“反正正”的可能性更大一些。
反复体会上面的想法,了解KMP算法的网友会恍然大悟:这就是KMP算法的基本思路!考虑这样一个问题:我们在当前字串中寻找子串“反正正”第一次出现的位置。假如当前已经能匹配模式串的前两个字“反正”,主串中的下一个字是“正”则匹配成功,主串的下一个字是“反”则将使模式串的当前匹配位置退到第一个字。考虑一个更复杂的例子:我们希望在主串中寻找子串abbaba,现在已经在主串中找到了abbab。如果主串下一个字符是a,则成功匹配;如果主串下一个字符是b,则模式串最多能匹配到的位置退到了第三个字符,我只需要从abb开始继续匹配,而不必一切从头再来。
我们可以用KMP算法完美地解决上面的问题。首先预处理出一个数组c,c[i,0]表示模式串匹配到了第i个字符,主串下一个字符为0(反)时,模式串的匹配位置将退到哪里;同样地,c[i,1]表示模式串匹配到了第i个字符,主串下一个字符为1(正)时,新的模式串匹配位置在什么地方。设f[i,j]表示第i次抛掷硬币后恰好匹配到模式串第j位有多少种情况,则f[i,j]=Σf(i-1,k) + Σf(i-1,l),其中k满足c[k,0]=j,l满足c[l,1]=j。将f[i,j]除以2的i次方,我们就得到了相应的概率值。或者更直接地,设P[i,j]表示第i次抛掷硬币后,最远能匹配到的模式串位置是第j位的概率,则P[i,j]=Σ( P(i-1,k)/2 ) + Σ( P(i-1,l)/2 )。注意,我们还应该添加一种特殊的概率值P[i,*],它表示在主串第i个字符以前已经成功匹配过的概率,这样的话下表中每一列的和才能为1。
来看一看程序的输出结果:
Pattern 1: s[]="aba"
主串位置 1 2 3 4 5 6 7 8 9 10
匹配到s[0] 0.5000 0.2500 0.2500 0.2500 0.2188 0.1875 0.1641 0.1445 0.1270 0.1113
匹配到s[1] 0.5000 0.5000 0.3750 0.3125 0.2813 0.2500 0.2188 0.1914 0.1680 0.1475
匹配到s[2] 0.0000 0.2500 0.2500 0.1875 0.1563 0.1406 0.1250 0.1094 0.0957 0.0840
匹配到s[3] 0.0000 0.0000 0.1250 0.1250 0.0938 0.0781 0.0703 0.0625 0.0547 0.0479
已找到匹配 0.0000 0.0000 0.0000 0.1250 0.2500 0.3438 0.4219 0.4922 0.5547 0.6094
Pattern 2: s[]="abb"
主串位置 1 2 3 4 5 6 7 8 9 10
匹配到s[0] 0.5000 0.2500 0.1250 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020 0.0010
匹配到s[1] 0.5000 0.5000 0.5000 0.4375 0.3750 0.3125 0.2578 0.2109 0.1719 0.1396
匹配到s[2] 0.0000 0.2500 0.2500 0.2500 0.2188 0.1875 0.1563 0.1289 0.1055 0.0859
匹配到s[3] 0.0000 0.0000 0.1250 0.1250 0.1250 0.1094 0.0938 0.0781 0.0645 0.0527
已找到匹配 0.0000 0.0000 0.0000 0.1250 0.2500 0.3750 0.4844 0.5781 0.6563 0.7207
这下我们可以清楚地看到,序列二提前出现的概率要大得多。注意到,根据我们的概率定义,表格中每一列的数字之和都是1。同时,倒数第二行的数字之和(有无穷多项)也应该为1,因为最后一行的概率就是倒数第二行的概率值累加的结果,而根据最后一行概率的定义,主串无穷长时已找到匹配的概率应该为1。因此,我们也可以把倒数第二行看作是模式串在主串第i个位置首次匹配成功的概率。我们可以根据这一结果近似地计算出抛掷次数的期望值。
转:
http://www.matrix67.com/blog/archives/366
注意看评论
http://www.haogongju.net/art/927583
http://www.haogongju.net/art/844752
看以前的:http://www.cnblogs.com/youxin/p/3275240.html
KMP算法与一个经典概率问题的更多相关文章
- KMP算法的一个简单实现
今天学习KMP算法,参考网上内容,实现算法,摘录网页内容并记录自己的实现如下: 原文出处: http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93M ...
- KMP算法的一个C++实现
本文参考阮一峰老师的KMP算法,重点是“部分匹配表”的建立.算法可参考 http://kb.cnblogs.com/page/176818/ . /* * kmp.cpp * Author: Qian ...
- HDU 3613 Best Reward(KMP算法求解一个串的前、后缀回文串标记数组)
题目链接: https://cn.vjudge.net/problem/HDU-3613 After an uphill battle, General Li won a great victory. ...
- KMP算法
KMP算法是字符串模式匹配当中最经典的算法,原来大二学数据结构的有讲,但是当时只是记住了原理,但不知道代码实现,今天终于是完成了KMP的代码实现.原理KMP的原理其实很简单,给定一个字符串和一个模式串 ...
- KMP算法学习
kmp算法完成的任务是:给定两个字符串O和f,长度分别为n和m,判断f是否在O中出现,如果出现则返回出现的位置.常规方法是遍历a的每一个位置,然后从该位置开始和b进行匹配,但是这种方法的复杂度是O(n ...
- KMP算法原理
前几天在看数据结构与算法,里面提到过kmp算法,一个超级经典的字符串匹配算法.虽然网上有一大堆关于kmp算法的介绍文章,但是我看过之后还是“不明觉厉”.所以打算自己写写,大家一起学习吧. 一.关于KM ...
- [C++] [算法] KMP算法
KMP串匹配算法是一个经典的算法. 传统BF算法是传统的字符串匹配算法.很好理解.叶实现.但时间复杂度太高. 本文将从字符串模式字符串被称为.为了匹配字符串被称为主弦. KMP配时能够少移动从串的位置 ...
- 算法(Java实现)—— KMP算法
KMP算法 应用场景 字符串匹配问题 有一个字符串str1 = " hello hello llo hhello lloh helo" 一个子串str2 = "hello ...
- BF算法与KMP算法
BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的 ...
随机推荐
- ListBox控件的操作与实现
.NET FrameWork>參考>类库>System.Windows.Forms>ListBox类的属性 1. 属性列表: SelectionMode 组件中 ...
- 教你使用python获得字符串的md5值
最近需要使用python获取字符串的md5值. 今天把代码贴出来和大家分享一下. 01 #!/usr/bin/env python 02 # -*- coding: cp936 -*- 03 impo ...
- IOS学习之蓝牙4.0 BLE
IOS学习也一段时间了,该上点干货了.前段时间研究了一下IOS蓝牙通讯相关的东西,把研究的一个成果给大家分享一下. 一 项目背景 简单介绍一下做的东西,设备是一个金融刷卡器,通过蓝牙与iphone手机 ...
- GDB调试之core文件(如何定位到Segment fault)
core dump又叫核心转储,当程序运行过程中发生异常,程序异常退出时,由操作系统把程序当前的内存状况存储在一个core文件中,叫core dump.(内部实现是:linux系统中内存越界会收到SI ...
- mysql 存储过程需要DELIMITER
DELIMITER &&CREATE PROCEDURE syncAdvertiser() BEGIN DECLARE id bigint; DECLARE _cur CURSOR F ...
- viewpager的layout_width="wrap_content"无效问题
在viewpager当中直接使用layout_width="wrap_content"是无效的,扩展了一下.解决这个问题. package com.soulagou.ui; imp ...
- php call_user_func和call_user_func_array
首先要看这个页面关于callable类型:http://www.php.net/manual/zh/language.types.callable.php 自 PHP 5.4 起可用 callable ...
- 基于Visual C++2013拆解世界五百强面试题--题18-程序结果分析2-终结篇
第二部分程序结果分析,分析流程还是写入代码注释中 分析下面程序的输出: #include <stdio.h> int main() { char *a = "hello" ...
- HDU 2202 最大三角形
题解:先算出凸包,然后枚举凸包上的点计算即可 #include <cstdio> #include <cmath> #include <cstdlib> #incl ...
- 开源html5_kiwijs_helloworld
本次须要的下载文件已经共享出来 网盘地址 由于我使用的是黑苹果系统, window我就无视了. 开发工具使用 网盘里的 dmg :Sublime Text 打开开发工具后在helloworld中找到 ...