1个常识:

如果 a≥b 并且 b≤a,那么 a=b.

2个前提:

1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N.

2)0可以被任何数整除,但是0不能整除任何数,即 ∀x(x|0) and ∀x(0| x).

1个引理:

假设 k|a, k|b,则对任意的 x,y  ∈
Z, k|(xa+yb)均成立.

证明:

  k|a => a=pk, k|b => b==qk (其中 p,q ∈ Z)

  于是有 xa+yb=xpk+yqk=(xp+yq)k

  因为 k|(xp+yq)k, 所以 k|(xa+yb)

gcd的Euclid算法证明:

命题:对任意 m, n ∈ N,证明gcd(m,n) = gcd(n, m mod n)

证明:

  令 k=gcd(m,n),则 k|m 并且 k|n;

  令 j=gcd(n, m mod n), 则j|n 并且 j|(m mod n);

  对于m, 可以用n 表示为 m=pn+(m mod n);

  由引理可知 j|m(其中 x=p,y=1), 又 j|n,于是 j 是 m 和 n 的公约数(但不一定是最大的);

  因为 k 是 m 和 n 的最大公约数,所以必有 k≥j;

  通过另一种表示形式:(m mod n)=m-pn,同理可得:

  k|(m mod n),又k|n,于是 k 是 (m mod n) 和 n 的公约数(也不一定是最大的);

  同样由 j 是 n 和 (m mod n) 的最大公约数可以得到
j≥k;

  由常识,得出结论 k=j,

  即gcd(m,n) = gcd(n, m mod n) ,得证。

源 http://www.cnblogs.com/ider/archive/2010/11/16/gcd_euclid.html

最大公约数(gcd):Euclid算法证明的更多相关文章

  1. 求两个数的最大公约数(Euclid算法)

    求两个数 p 和 q 的最大公约数(greatest common divisor,gcd),利用性质 如果 p > q, p 和 q 的最大公约数 = q 和 (p % q)的最大公约数. 证 ...

  2. 最大公约数与欧几里得(Euclid)算法

    ---恢复内容开始--- 记a, b的最大公约数为gcd(a, b).显然, gcd(a,b)=gcd(|a|,|b|). 计算最大公约数的Euclid算法基于下面定理: [GCD递归定理]对于任意非 ...

  3. 使用Euclid算法求最大公约数

    参考文章 1.<linux c编程一站式学习>的习题5.3.1 2.百度百科Euclid算法:https://baike.baidu.com/item/Euclid%E7%AE%97%E6 ...

  4. Gcd&Exgcd算法学习小记

    Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用E ...

  5. EM算法(4):EM算法证明

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(4):EM算法证明 1. 概述 上一篇博客我们已经讲过 ...

  6. 1011 最大公约数GCD

    1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B < ...

  7. 51Nod--1011最大公约数GCD

    1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用 ...

  8. 最大公约数(GCD)与最小公倍数(LCM)的计算

    给出两个数a.b,求最大公约数(GCD)与最小公倍数(LCM) 一.最大公约数(GCD)    最大公约数的递归:  * 1.若a可以整除b,则最大公约数是b  * 2.如果1不成立,最大公约数便是b ...

  9. Educational Codeforces Round 39 Editorial B(Euclid算法,连续-=与%=的效率)

    You have two variables a and b. Consider the following sequence of actions performed with these vari ...

随机推荐

  1. FJ省队集训DAY2 T1

    思路:转换成n条三维空间的直线,求最大的集合使得两两有交点. 有两种情况:第一种是以某2条直线为平面,这时候只要统计这个平面上有几条斜率不同的直线就可以了 还有一种是全部交于同一点,这个也只要判断就可 ...

  2. sql中update,alter,modify,delete,drop的区别和使用(整理)(转)

    关于update和alter: 百度知道上关于update和alter有一个很形象的总结: 一个表有很多字段,一个字段里有很多数据. 一个家有很多房间,一个房间里有很多家具. update是用来将衣柜 ...

  3. SIP学习之网络链接

    风清扬的CSDN博客  文章分类SIP http://blog.csdn.net/ppy521/article/category/1227390

  4. HDU4453--Looploop (Splay伸展树)

    Looploop XXX gets a new toy named Looploop. The toy has N elements arranged in a loop, an arrow poin ...

  5. mysql 存储过程 计算报表

    把用例执行情况mysql表汇总起来 proc_write_report 汇总执行用例表中的测试数据 写入report 表,report表包括字段 report_id(自增)execution_flag ...

  6. Python字典的操作与使用

    字典的描述 字典是一种key-value的数据类型,使用就像我们上学用的字典,通过拼音(key)来查对应字的详细内容(value). 字典的特性 1.字典是无序的(不像列表一样有下标,它通过key来获 ...

  7. python使用一个集合代替列表

    """说明:对于一个指定的序列,如果需要获得一个只包含该序列中不重复的序列时,使用以下算法:"""seq=['a','a','b','c', ...

  8. web项目跨域访问

    1.同域相互访问 假设A.html 与 b.html domain都是localhost (同域) A.html中iframe 嵌入 B.html,name=myframe A.html有js fun ...

  9. Spring Ldap 的增删改查

    package ldap.entity; /** * 本测试类person对象来自schema文件的core.schema文件 * objectClass为person,必填属性和可选属性也是根据该对 ...

  10. 为MyEclipse加入自己定义凝视

    非常多时候我们默认的MyEclipse的类凝视是这种,例如以下图 能够通过改动MyEclipse的凝视规则来改变,不但能够改动类的.还能够改动字段.方法等凝视规则,操作方法例如以下 1.针对方法的凝视 ...