A Pythagorean triplet is a set of three natural numbers, a  b  c, for which,

a2 + b2 = c2

For example, 32 + 42 = 9 + 16 = 25 = 52.

There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> void show()
{
int a,b,c;
for(a=; a<; a++)
{
for(c=; c<; c++)
{
b=-a-c;
if(a*a+b*b==c*c)
{
printf("%d\n",a*b*c);
return;
}
}
}
} int main()
{
show();
return ;
}
Answer:
31875000

(Problem 9)Special Pythagorean triplet的更多相关文章

  1. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  3. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  4. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  5. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  6. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  7. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  8. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  9. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

随机推荐

  1. ForeignKey.on_delete

    当由一个 ForeignKey 引用的对象被删除,默认情况下,Django模拟SQL的 ON DELETE CASCADE 来删除对象的 ForeignKey 关系.这样可以覆盖指定的 on_dele ...

  2. .NET Core 安装

    Visual Studio 2015 和 .NET Core 安装 安装 Visual Studio 和 .NET Core 1.安装 Visual Studio Community 2015,选择 ...

  3. Browserify: 使nodejs模块可以在浏览器下使用

    Browserify:浏览器加载Node.js模块--------------------------------------------------随着JavaScript程序逐渐模块化,在ECMA ...

  4. rsync、ssh备份

    Linux系统需求 为了实现这个备份程序,需要准备一个外部驱动器.您可以将备份写到一个外部USB磁盘,但这样做效率不高.因此,我假设您将备份写到位于网络某处的服务器中.这台服务器要为带有SSH和rsy ...

  5. VC中判断指定窗口是否被其他窗口遮挡

    本来是想判断当前窗口是否在最前面,无奈办法用尽就是不行,于是想换个思路:判断指定窗口是否被其他窗口遮挡.然后掘网三尺,找到了这个: bool CTestTray2Dlg::IsCoveredByOth ...

  6. html文件中文在浏览器中显示乱码问题解决

    利用浏览器打开html文件时,中文显示乱码,如下是原文件的内容 1 <html>   2         <head>   3             <title> ...

  7. 17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication

    17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication 基于语句和基于行复制的优点和缺点: ...

  8. HDU 3625 Examining the Rooms

    题目大意:有n个房间,n!个钥匙,在房间中,最多可以破k扇门,然后得到其中的钥匙,去开其它的门,但是第一扇门不可以破开,求可以打开所有门的概率. 题解:首先,建立这样的一个模型,题目相当于给出一个图, ...

  9. CF-192-diy-2

    题目链接: http://codeforces.com/contest/330 A. Cakeminator 题目意思: 给一个r*c的矩阵方格,有些位置有S,如果某一行和一列都不含标记为S的方格,则 ...

  10. .NET使用NPOI组件将数据导出Excel

    .NPOI官方网站:http://npoi.codeplex.com/ 可以到此网站上去下载最新的NPOI组件版本 2.NPOI在线学习教程(中文版): http://www.cnblogs.com/ ...