A Pythagorean triplet is a set of three natural numbers, a  b  c, for which,

a2 + b2 = c2

For example, 32 + 42 = 9 + 16 = 25 = 52.

There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> void show()
{
int a,b,c;
for(a=; a<; a++)
{
for(c=; c<; c++)
{
b=-a-c;
if(a*a+b*b==c*c)
{
printf("%d\n",a*b*c);
return;
}
}
}
} int main()
{
show();
return ;
}
Answer:
31875000

(Problem 9)Special Pythagorean triplet的更多相关文章

  1. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  3. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  4. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  5. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  6. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  7. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  8. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  9. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

随机推荐

  1. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  2. 定时每天备份mysql

    http://blog.csdn.net/panning_hu/article/details/9210001 Spring MVC Spring中MVC框架的底层实现 http://blog.csd ...

  3. Qt中QFtp获取带有中文的文件名称出现乱码的解决方法(执行操作前就转换编码)

    今天研究了一下QFtp这个类,发现访问得到的文件名称中一旦出现中文,不管怎么转换编码格式,最终显示出来的始终都是乱码.由于编码错误,我写了两个函数用于互相转换编码. 一个是由正常编码转为QFTP上所谓 ...

  4. 关于Delphi中二维数组的声明和大小调整(对非基本类型数据,小心内存泄漏)

    这是一个实例: procedure TMainForm.Button1Click(Sender: TObject);var  arr:array of array of string;begin  s ...

  5. dump文件定位程序崩溃代码行

    1.dump文件 2.程序对应的pdb 步骤一:安装windbg 步骤二:通过windbg打开crash dump文件 步骤三:设置pdb文件路径,即符号表路径 步骤四:运行命令!analyze -v ...

  6. 01_什么是Elasticsearch

    Logstash是一个开源的用于收集,分析和存储日志的工具. Kibana4用来搜索和查看Logstash已索引的日志的web接口.这两个工具都基于 Elasticsearch. Logstash: ...

  7. DllMain加载其他DLL造成的死锁问题及其解决办法

    使用VS 2008新建一个MFC ActiveX工程,因为在工程里要用到GDI+.我习惯把初始化GDI+库的代码放在应用程序类的InitInstance函数,对应的销毁代码放在ExitInstance ...

  8. Android 通过Dom, Sax, Pull解析网络xml数据

    这篇文章不是完全原创,XML解析的部分参考了 liuhe688 的文章.文章地址:http://blog.csdn.net/liuhe688/article/details/6415593 这是一个几 ...

  9. java学习之JDBC

    之前学习了数据库原理,上学期也学了oracle数据库,我的学习视频上是讲的mysql数据库,其实都差不多,复习了下sql知识,数据库的学习就没有写下来了,就从Java怎么操作数据库开始吧. 因为这年过 ...

  10. uva 10651 - Pebble Solitaire(记忆化搜索)

    题目链接:10651 - Pebble Solitaire 题目大意:给出一个12格的棋盘,‘o'代表摆放棋子,’-‘代表没有棋子, 当满足’-oo'时, 最右边的棋子可以跳到最左边的位子,而中间的棋 ...