(Problem 9)Special Pythagorean triplet
A Pythagorean triplet is a set of three natural numbers, a
b
c, for which,
For example, 32 + 42 = 9 + 16 = 25 = 52.
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> void show()
{
int a,b,c;
for(a=; a<; a++)
{
for(c=; c<; c++)
{
b=-a-c;
if(a*a+b*b==c*c)
{
printf("%d\n",a*b*c);
return;
}
}
}
} int main()
{
show();
return ;
}
|
Answer:
|
31875000 |
(Problem 9)Special Pythagorean triplet的更多相关文章
- (Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 53)Combinatoric selections
There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...
- (Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...
随机推荐
- ForeignKey.on_delete
当由一个 ForeignKey 引用的对象被删除,默认情况下,Django模拟SQL的 ON DELETE CASCADE 来删除对象的 ForeignKey 关系.这样可以覆盖指定的 on_dele ...
- .NET Core 安装
Visual Studio 2015 和 .NET Core 安装 安装 Visual Studio 和 .NET Core 1.安装 Visual Studio Community 2015,选择 ...
- Browserify: 使nodejs模块可以在浏览器下使用
Browserify:浏览器加载Node.js模块--------------------------------------------------随着JavaScript程序逐渐模块化,在ECMA ...
- rsync、ssh备份
Linux系统需求 为了实现这个备份程序,需要准备一个外部驱动器.您可以将备份写到一个外部USB磁盘,但这样做效率不高.因此,我假设您将备份写到位于网络某处的服务器中.这台服务器要为带有SSH和rsy ...
- VC中判断指定窗口是否被其他窗口遮挡
本来是想判断当前窗口是否在最前面,无奈办法用尽就是不行,于是想换个思路:判断指定窗口是否被其他窗口遮挡.然后掘网三尺,找到了这个: bool CTestTray2Dlg::IsCoveredByOth ...
- html文件中文在浏览器中显示乱码问题解决
利用浏览器打开html文件时,中文显示乱码,如下是原文件的内容 1 <html> 2 <head> 3 <title> ...
- 17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication 基于语句和基于行复制的优点和缺点: ...
- HDU 3625 Examining the Rooms
题目大意:有n个房间,n!个钥匙,在房间中,最多可以破k扇门,然后得到其中的钥匙,去开其它的门,但是第一扇门不可以破开,求可以打开所有门的概率. 题解:首先,建立这样的一个模型,题目相当于给出一个图, ...
- CF-192-diy-2
题目链接: http://codeforces.com/contest/330 A. Cakeminator 题目意思: 给一个r*c的矩阵方格,有些位置有S,如果某一行和一列都不含标记为S的方格,则 ...
- .NET使用NPOI组件将数据导出Excel
.NPOI官方网站:http://npoi.codeplex.com/ 可以到此网站上去下载最新的NPOI组件版本 2.NPOI在线学习教程(中文版): http://www.cnblogs.com/ ...