A Pythagorean triplet is a set of three natural numbers, a  b  c, for which,

a2 + b2 = c2

For example, 32 + 42 = 9 + 16 = 25 = 52.

There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> void show()
{
int a,b,c;
for(a=; a<; a++)
{
for(c=; c<; c++)
{
b=-a-c;
if(a*a+b*b==c*c)
{
printf("%d\n",a*b*c);
return;
}
}
}
} int main()
{
show();
return ;
}
Answer:
31875000

(Problem 9)Special Pythagorean triplet的更多相关文章

  1. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  3. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  4. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  5. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  6. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  7. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  8. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  9. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

随机推荐

  1. AngularJS的启动引导过程

    原文:http://www.angularjs.cn/A137?utm_source=ourjs.com 目录: 引导之前 自动引导启动框架 手工引导启动框架 引导第1步:创建注入器 引导第2步:创建 ...

  2. LintCode-不同的子序列

    题目描述: 给出字符串S和字符串T,计算S的不同的子序列中T出现的个数. 子序列字符串是原始字符串通过删除一些(或零个)产生的一个新的字符串,并且对剩下的字符的相对位置没有影响.(比如,“ACE”是“ ...

  3. Delphi 预编译指令

    <Delphi下深入Windows核心编程>(附录A Delphi编译指令说明)Delphi快速高小的编译器主要来自Object PASCAL的严谨,使用Delphi随时都在与编译器交流, ...

  4. HDU 3231 Box Relations

    题目大意: 给定一些正方体的关系,要求一组符合这些关系的正方体坐标,如果不存在符合条件的正方体坐标,IMPOSSIBLE.(Special Judge) 实力还是太弱了,完全不会…… #include ...

  5. 利用相关的Aware接口

    Struts 2提供了Aware接口.Aware为"感知"的意思,实现了相关Aware接口的Action能够感知相应的资源.Struts在实例化一个Action实例时,如果发现它实 ...

  6. Sicily-1153 解题报告

    一.原题中文大意. 1      2       3      4       5      6         7     8 9     10       11    12      13    ...

  7. 禁止apache显示目录索引

    1)修改目录配置: 复制代码 代码如下: <Directory "D:/Apache/blog.phpha.com">Options Indexes FollowSym ...

  8. UIScreen的 bound、frame、scale属性

    CGRect bound = [[UIScreen mainScreen] bounds];  // 返回的是带有状态栏的Rect   CGRect frame = [[UIScreen mainSc ...

  9. 「C」 函数、运算、流程控制

    一.函数 (一)什么是函数 任何一个C语言程序都是由一个或者多个程序段(小程序)构成的,每个程序段都有自己的功能,我们一般称这些程序段为“函数”. (二)函数的定义 目的:将一个常用的功能封装起来,方 ...

  10. 「OC」类的深入研究、description方法和sel

    一.类的深入研究 (一)类的本质 类本身也是一个对象,是class类型的对象,简称“类对象”. Class类型的定义: Typedef struct obj class *class; 类名就代表着类 ...