The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another.

There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes, exhibiting this property, but there is one other 4-digit increasing sequence.

What 12-digit number do you form by concatenating the three terms in this sequence?

题目大意:

1487, 4817, 8147这个序列,每个比前一个递增3330,而且这个序列有两个特点:1. 序列中的每个数都是质数。2. 每个四位数都是其他数字的一种排列。

1,2,3位组成的三个质数的序列中没有具有以上性质的。但是还有另外一个四位的递增序列满足这个性质。

如果将这另外一个序列的三个数连接起来,组成的12位数字是多少?

//(Problem 49)Prime permutations
// Completed on Thu, 13 Feb 2014, 15:35
// Language: C
//**********************************************
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus///**********************************************
#include<stdio.h>
#include<stdbool.h>
#include<stdlib.h>
#include<string.h>
int a[]; bool prim(int n)
{
int i;
for(i = ; i * i <= n; i++) {
if(n % i ==) return false;
}
return true;
} int cmp(const void *a, const void *b)
{
return (*(char*)a - *(char*)b);
} void init()
{
int i, j;
i = ;
j = ;
a[] = ;
while(j < ) {
if(prim(i)) {
a[j++] = i;
}
i += ;
}
} bool judge(int a, int b, int c)
{
char A[], B[], C[];
sprintf(A, "%d", a);
qsort(A, , sizeof(char), cmp);
sprintf(B, "%d", b);
qsort(B, , sizeof(char), cmp);
sprintf(C, "%d", c);
qsort(C, , sizeof(char), cmp);
if(strcmp(A, B)== && strcmp(A, C) == )
return true;
return false;
} void solve()
{
int i, b, c, d;
i = ;
init();
while(a[i++] < );
for(; i < ; i++) {
b = a[i]; c = a[i] + ; d = a[i] + ;
if(d < ) {
if(prim(b) && prim(c) && prim(d)) {
if(judge(b, c, d)) {
printf("%d %d %d\n", b, c, d);
}
}
}
} } int main()
{
solve();
return ;
}
Answer:
296962999629

(Problem 49)Prime permutations的更多相关文章

  1. (Problem 62)Cubic permutations(待续)

    The cube, 41063625 (3453), can be permuted to produce two other cubes: 56623104 (3843) and 66430125 ...

  2. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  3. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  4. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  5. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  6. (Problem 37)Truncatable primes

    The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...

  7. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

  8. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  9. (Problem 29)Distinct powers

    Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...

随机推荐

  1. Java Dom解析xml

    Dom解析是将xml文件全部载入,组装成一颗dom树,然后通过节点以及节点之间的关系来解析xml文件,下面结合这个xml文件来进行dom解析. <?xml version="1.0&q ...

  2. MySQL学习笔记(2)

    打开数据库 USE db_name; SELECT DATABASE();查看当前所选中的数据库 创建数据表 CREATA TABLE [IF NOT EXISTS] table_name ( col ...

  3. SQL练习之求解填字游戏

    SELECT * FROM dbo.spt_values

  4. 在windows后台调用webservice

    1.首先要创建个webservice,然后再webservice写一个方法如图 2.然后将WebService1.asmx 在浏览器中浏览会出现如图所示(该地址很重要,复制此地址在下边程序中要用到) ...

  5. 记hive select distinct 多列 误区一则

    当select distinct a,b,c时,只会对a.b.c都起作用,无法达到只顾虑多余的a列: 根据hive官方网站说明:当有表 a b 10 1 10  2 10 3 此时select a,b ...

  6. C#控件大小随窗体大小等比例变化

    相信很多博友在开发初次接触学习C# winForm时,当窗体大小变化时,窗体内的控件并没有随着窗体的变化而变化,最近因为一个项目工程的原因,也需要解决这个问题.通过查阅和学习,这个问题得到了解决,或许 ...

  7. .Net平台-MVP模式再探(二)

    PS:     本文与  上一遍文章  没有什么必然的联系,可以说是对于MVP的一定的加深,或许在理解上比上一篇多有点难度. 正文   一.简单讲讲MVP是什么玩意儿 如果从层次关系来讲,MVP属于P ...

  8. 有关std::map和std::vector的使用

    先说map吧. 最需要注意的就是:用下标访问map中的元素时,与使用下标访问vector的行为截然不同! 用下标访问不存在的元素时,将导致在map容器中添加一个新的元素,它的键即为该下标! 然而很多时 ...

  9. webService接口大全

    中文<->英文双向翻译WEB服务 获得标准数据 Endpoint: http://fy.webxml.com.cn/webservices/EnglishChinese.asmx Disc ...

  10. Web存储(Web Storage)介绍

    Web存储即在客户端存储数据. 在没有Web Storage之前,是通过cookie来在客户端存储数据的.但是由于 浏览器能存cookie数比较少.如IE8,Firefox,opera每个域可以保存的 ...