(Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another.
There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes, exhibiting this property, but there is one other 4-digit increasing sequence.
What 12-digit number do you form by concatenating the three terms in this sequence?
题目大意:
1487, 4817, 8147这个序列,每个比前一个递增3330,而且这个序列有两个特点:1. 序列中的每个数都是质数。2. 每个四位数都是其他数字的一种排列。
1,2,3位组成的三个质数的序列中没有具有以上性质的。但是还有另外一个四位的递增序列满足这个性质。
如果将这另外一个序列的三个数连接起来,组成的12位数字是多少?
//(Problem 49)Prime permutations
// Completed on Thu, 13 Feb 2014, 15:35
// Language: C
//**********************************************
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus///**********************************************
#include<stdio.h>
#include<stdbool.h>
#include<stdlib.h>
#include<string.h>
int a[]; bool prim(int n)
{
int i;
for(i = ; i * i <= n; i++) {
if(n % i ==) return false;
}
return true;
} int cmp(const void *a, const void *b)
{
return (*(char*)a - *(char*)b);
} void init()
{
int i, j;
i = ;
j = ;
a[] = ;
while(j < ) {
if(prim(i)) {
a[j++] = i;
}
i += ;
}
} bool judge(int a, int b, int c)
{
char A[], B[], C[];
sprintf(A, "%d", a);
qsort(A, , sizeof(char), cmp);
sprintf(B, "%d", b);
qsort(B, , sizeof(char), cmp);
sprintf(C, "%d", c);
qsort(C, , sizeof(char), cmp);
if(strcmp(A, B)== && strcmp(A, C) == )
return true;
return false;
} void solve()
{
int i, b, c, d;
i = ;
init();
while(a[i++] < );
for(; i < ; i++) {
b = a[i]; c = a[i] + ; d = a[i] + ;
if(d < ) {
if(prim(b) && prim(c) && prim(d)) {
if(judge(b, c, d)) {
printf("%d %d %d\n", b, c, d);
}
}
}
} } int main()
{
solve();
return ;
}
|
Answer:
|
296962999629 |
(Problem 49)Prime permutations的更多相关文章
- (Problem 62)Cubic permutations(待续)
The cube, 41063625 (3453), can be permuted to produce two other cubes: 56623104 (3843) and 66430125 ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 47)Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 7 15 = 3 5 The fi ...
- (Problem 37)Truncatable primes
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...
- (Problem 35)Circular primes
The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...
- (Problem 33)Digit canceling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...
- (Problem 29)Distinct powers
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...
随机推荐
- 解密javascript模块载入器require.js
require.config require.config设置require.js模板载入选项 // 定义config req.config = function (config) { return ...
- ECSHOP 模版文件里的编辑区域
Ecshop 中的模板能够有可编辑区域,在模板中是通过 <!-- TemplateBeginEditable name="左边区域" --> <!-- Templ ...
- 游戏开场镜头拉近(Unity3D开发之四)
猴子原创,欢迎转载.转载请注明: 转载自Cocos2D开发网–Cocos2Dev.com,谢谢! 原文地址: http://www.cocos2dev.com/? p=553 今天看了个Demo.发现 ...
- HBase API详解
一.Java API和HBase数据模型的关系 在Java中,与HBase数据库存储管理相关的类包括HBaseAdmin.HBaseConfiguration.HTable.HTableDescrip ...
- PHPEXCEL导入小技巧
在导入excel的时候,单元格格式和公式经常让导入不顺畅.注意phpexcel文档说明,基本上就可以很顺利的导入. 1.忽略单元格格格式,并导入xls.xlsx两种格式 $objReader = PH ...
- Spring jdbcTemplate + EasyUI 物理分页
前文说到,新项目中,用到的是SpringMVC + jdbcTemplate,前台是EasyUI,发现同事以前封装分页是逻辑分页,于是,自己动手封装了下物理分页. 这个是核心分页实体: import ...
- 使用 http://httpbin.org/ 验证代理地址
发现一个很方便的工具,在Linux 下使用 curl http://httpbin.org/ 可以返回当前使用的一些网络信息
- 使用VisualVM分析tomcat运行状况(1)
VisualVM是一款java程序性能分析与调优工具,而且还是jdk中自带的工具之一. tomcat也是一个java程序,自然也可以用它来进行监控.不过这里还是会有些问题,tomcat有两种常用的期待 ...
- java中三种常见内存溢出错误的处理方法
更多 10 相信有一定java开发经验的人或多或少都会遇到OutOfMemoryError的问题,这个问题曾困扰了我很长时间,随着解决各类问题经验的积累以及对问题根源的探索,终于有了一个比较深入的 ...
- 美版nexus 5 LG D820才支持CDMA,国际版LG D821不支持
我们都知道nexus 5其实是有两个不同的版本的,分别是LG D820和LG D821,它们在几乎所有的配置和外观上都没有任何的区别,主要区别在通讯模块上,一个支持GSM/CDMA/WCDMA/LTE ...