The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another.

There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes, exhibiting this property, but there is one other 4-digit increasing sequence.

What 12-digit number do you form by concatenating the three terms in this sequence?

题目大意:

1487, 4817, 8147这个序列,每个比前一个递增3330,而且这个序列有两个特点:1. 序列中的每个数都是质数。2. 每个四位数都是其他数字的一种排列。

1,2,3位组成的三个质数的序列中没有具有以上性质的。但是还有另外一个四位的递增序列满足这个性质。

如果将这另外一个序列的三个数连接起来,组成的12位数字是多少?

//(Problem 49)Prime permutations
// Completed on Thu, 13 Feb 2014, 15:35
// Language: C
//**********************************************
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus///**********************************************
#include<stdio.h>
#include<stdbool.h>
#include<stdlib.h>
#include<string.h>
int a[]; bool prim(int n)
{
int i;
for(i = ; i * i <= n; i++) {
if(n % i ==) return false;
}
return true;
} int cmp(const void *a, const void *b)
{
return (*(char*)a - *(char*)b);
} void init()
{
int i, j;
i = ;
j = ;
a[] = ;
while(j < ) {
if(prim(i)) {
a[j++] = i;
}
i += ;
}
} bool judge(int a, int b, int c)
{
char A[], B[], C[];
sprintf(A, "%d", a);
qsort(A, , sizeof(char), cmp);
sprintf(B, "%d", b);
qsort(B, , sizeof(char), cmp);
sprintf(C, "%d", c);
qsort(C, , sizeof(char), cmp);
if(strcmp(A, B)== && strcmp(A, C) == )
return true;
return false;
} void solve()
{
int i, b, c, d;
i = ;
init();
while(a[i++] < );
for(; i < ; i++) {
b = a[i]; c = a[i] + ; d = a[i] + ;
if(d < ) {
if(prim(b) && prim(c) && prim(d)) {
if(judge(b, c, d)) {
printf("%d %d %d\n", b, c, d);
}
}
}
} } int main()
{
solve();
return ;
}
Answer:
296962999629

(Problem 49)Prime permutations的更多相关文章

  1. (Problem 62)Cubic permutations(待续)

    The cube, 41063625 (3453), can be permuted to produce two other cubes: 56623104 (3843) and 66430125 ...

  2. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  3. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  4. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  5. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  6. (Problem 37)Truncatable primes

    The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...

  7. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

  8. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  9. (Problem 29)Distinct powers

    Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...

随机推荐

  1. 解密javascript模块载入器require.js

    require.config require.config设置require.js模板载入选项 // 定义config req.config = function (config) { return ...

  2. ECSHOP 模版文件里的编辑区域

    Ecshop 中的模板能够有可编辑区域,在模板中是通过 <!-- TemplateBeginEditable name="左边区域" --> <!-- Templ ...

  3. 游戏开场镜头拉近(Unity3D开发之四)

    猴子原创,欢迎转载.转载请注明: 转载自Cocos2D开发网–Cocos2Dev.com,谢谢! 原文地址: http://www.cocos2dev.com/? p=553 今天看了个Demo.发现 ...

  4. HBase API详解

    一.Java API和HBase数据模型的关系 在Java中,与HBase数据库存储管理相关的类包括HBaseAdmin.HBaseConfiguration.HTable.HTableDescrip ...

  5. PHPEXCEL导入小技巧

    在导入excel的时候,单元格格式和公式经常让导入不顺畅.注意phpexcel文档说明,基本上就可以很顺利的导入. 1.忽略单元格格格式,并导入xls.xlsx两种格式 $objReader = PH ...

  6. Spring jdbcTemplate + EasyUI 物理分页

    前文说到,新项目中,用到的是SpringMVC + jdbcTemplate,前台是EasyUI,发现同事以前封装分页是逻辑分页,于是,自己动手封装了下物理分页. 这个是核心分页实体: import ...

  7. 使用 http://httpbin.org/ 验证代理地址

    发现一个很方便的工具,在Linux 下使用  curl  http://httpbin.org/   可以返回当前使用的一些网络信息

  8. 使用VisualVM分析tomcat运行状况(1)

    VisualVM是一款java程序性能分析与调优工具,而且还是jdk中自带的工具之一. tomcat也是一个java程序,自然也可以用它来进行监控.不过这里还是会有些问题,tomcat有两种常用的期待 ...

  9. java中三种常见内存溢出错误的处理方法

    更多 10   相信有一定java开发经验的人或多或少都会遇到OutOfMemoryError的问题,这个问题曾困扰了我很长时间,随着解决各类问题经验的积累以及对问题根源的探索,终于有了一个比较深入的 ...

  10. 美版nexus 5 LG D820才支持CDMA,国际版LG D821不支持

    我们都知道nexus 5其实是有两个不同的版本的,分别是LG D820和LG D821,它们在几乎所有的配置和外观上都没有任何的区别,主要区别在通讯模块上,一个支持GSM/CDMA/WCDMA/LTE ...