Help Me Escape

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld
& %llu

Appoint description: 
System Crawler  (2014-10-22)

Description

Background

    If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at the door. And unto thee shall be his desire, and thou shalt rule over him. 

    And Cain talked with Abel his brother: and it came to pass, when they were in the field, that Cain rose up against Abel his brother, and slew him. 

    And the LORD said unto Cain, Where is Abel thy brother? And he said, I know not: Am I my brother's keeper? 

    And he said, What hast thou done? the voice of thy brother's blood crieth unto me from the ground. 

    And now art thou cursed from the earth, which hath opened her mouth to receive thy brother's blood from thy hand; 

    When thou tillest the ground, it shall not henceforth yield unto thee her strength; a fugitive and a vagabond shalt thou be in the earth.

—— Bible Chapter 4

Now Cain is unexpectedly trapped in a cave with N paths. Due to LORD's punishment, all the paths are zigzag and dangerous. The difficulty of the ith path is ci.

Then we define f as the fighting capacity of Cain. Every day, Cain will be sent to one of the N paths randomly.

Suppose Cain is in front of the ith path. He can successfully take ti days to escape from the cave as long as his fighting capacity f is larger than ci. Otherwise, he has to keep trying day after day. However,
if Cain failed to escape, his fighting capacity would increase cias the result of actual combat. (A kindly reminder: Cain will never died.)

As for ti, we can easily draw a conclusion that ti is closely related to ci. Let's use the following function to describe their relationship:

After D days, Cain finally escapes from the cave. Please output the expectation of D.

Input

The input consists of several cases. In each case, two positive integers N and f (n ≤ 100, f ≤ 10000) are given in the first line. The second line includes N positive integers ci (ci ≤ 10000,
1 ≤ i ≤ N)

Output

For each case, you should output the expectation(3 digits after the decimal point).

Sample Input

3 1
1 2 3

Sample Output

6.889

/*************************************************************************
> File Name: t.cpp
> Author: acvcla
> Mail: acvcla@gmail.com
> Created Time: 2014年10月21日 星期二 21时33分55秒
************************************************************************/
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cstring>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<cstdlib>
#include<ctime>
#include<set>
#include<math.h>
using namespace std;
typedef long long LL;
const int maxn = 20000 + 10;
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define pb push_back
int n,c[105],f;
double dp[maxn];
double d(int f){
if(dp[f]>0)return dp[f];
dp[f]=0;
for(int i=1;i<=n;i++){
if(f>c[i]){
int t=(1+sqrt(5))*c[i]*c[i]/2;
dp[f]+=(double)t/n;
}else{
dp[f]+=(1+d(f+c[i]))/n;
}
}
return dp[f];
}
int main(int argc, char const *argv[])
{
while(~scanf("%d%d",&n,&f)){
memset(dp,0,sizeof dp);
for(int i=1;i<=n;i++)scanf("%d",c+i);
printf("%.3f\n",d(f));
}
return 0;
}

概率dp ZOJ 3640的更多相关文章

  1. [概率dp] ZOJ 3822 Domination

    题意: 给N×M的棋盘.每天随机找一个没放过棋子的格子放一个棋子 问使得每一个每列都有棋子的天数期望 思路: dp[i][j][k] 代表放了i个棋子占了j行k列 到达目标状态的期望 然后从 dp[n ...

  2. zoj 3640 Help Me Escape 概率DP

    记忆化搜索+概率DP 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

  3. zoj 3822(概率dp)

    ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Ju ...

  4. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  5. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  6. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  7. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  8. ZOJ 3822 ( 2014牡丹江区域赛D题) (概率dp)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 题意:每天往n*m的棋盘上放一颗棋子,求多少天能将棋盘的每行每列都至少有 ...

  9. 概率dp专场

    专题链接 第一题--poj3744 Scout YYF I  链接 (简单题) 算是递推题 如果直接推的话 会TLE 会发现 在两个长距离陷阱中间 很长一部分都是重复的 我用 a表示到达i-2步的概率 ...

随机推荐

  1. ARM体系结构_DAY2

    程序状态寄存器(CPSR) Mode位[4:0]:处理器模式为 USER模式不能直接切换到特权模式,在特权模式下可以直接修改mode位[4:0]为10000,切换到USER模式. T bit位[5]: ...

  2. Word文档分割总结

    Word文档分割总结 方法: 1. word创建子文件实现文件分割 2. VBA实现 3. 网上分割合并的插件软件 一. word创建子文件实现文件分割 打开需要分割的文件 >> 视图 & ...

  3. Linux的目录结构及其作用

    /bin bin是Binary的缩写.这个目录存放着最经常使用的命令. /boot这里存放的是启动Linux时使用的一些核心文件,包括一些连接文件以及镜像文件. /dev dev是Device(设备) ...

  4. mysql高可用方案MHA介绍

    mysql高可用方案MHA介绍 概述 MHA是一位日本MySQL大牛用Perl写的一套MySQL故障切换方案,来保证数据库系统的高可用.在宕机的时间内(通常10-30秒内),完成故障切换,部署MHA, ...

  5. 使用游标循环进行SQL更新插入的SQL语句

    使用SQL中的循环,可以实现许多我们需要的操作,比如SQL更新操作.下面就为您介绍使用游标循环进行SQL更新插入的SQL语句写法,希望对您深入学习SQL更新有所帮助. --开始事务 BEGIN TRA ...

  6. oracle数据库事务相关【weber出品必属精品】

    事务的概念:事务:一个事务由一组构成一个逻辑操作的DML语句组成 事务有开始有结束,事务以DML语句开始,以Conmmit和Rollback结束.以下情况会使得事务结束: 1. 执行COMMIT 或者 ...

  7. C#中的表达式树的浅解

    表达式树可以说是Linq的核心之一,为什么是Linq的核心之一呢?因为表达式树使得c#不再是仅仅能编译成IL,我们可以通过c#生成一个表达式树,将结果作为一个中间格式,在将其转换成目标平台上的本机语言 ...

  8. Django初学笔记1.

    1,安装python 和 Django , 参考网上教程(安装python,配置path, 安装django,配置path..) 2,查看django安装版本:cmd-->python--> ...

  9. Oracle复杂查询

    1:列出所有员工的姓名,部门名称,和工资 select a1.ename,a1.sal,a2.dname from emp a1,dept a2 where a1.deptno = a2.deptno ...

  10. phpMyAdmin中mysql的创建数据库时的编码的问题

    转载自新浪博客    Sean 一. mysql中utf8编码的utf8_bin,utf8_general_cs,utf8_general_ci的区别 utf8_general_ci 不区分大小写,这 ...