TensorFlow 深度学习笔记 从线性分类器到深度神经网络
转载请注明作者:梦里风林
Github工程地址:https://github.com/ahangchen/GDLnotes
欢迎star,有问题可以到Issue区讨论
官方教程地址
视频/字幕下载
Limit of Linear Model
- 实际要调整的参数很多

如果有N个Class,K个Label,需要调整的参数就有(N+1)K个
Linear Model不能应对非线性的问题

- Linear Model的好处
- GPU就是设计用于大矩阵相乘的,因此它们用来计算Linear Model非常efficient
Stable:input的微小改变不会很大地影响output

- 求导方便:线性求导是常数

- 我们希望参数函数是线性的,但整个model是非线性的
- 所以需要对各个线性模型做非线性组合
- 最简单的非线性组合:分段线性函数(RELU)

Neural network
- 用一个RELU作为中介,一个Linear Model的输出作为其输入,其输出作为另一个Linear Model的输入,使其能够解决非线性问题

- 神经网络并不一定要完全像神经元那样工作
- Chain Rule:复合函数求导规律

- Lots of data reuse and easy to implement(a simple data pipeline)
- Back propagation

- 计算train_loss时,数据正向流入,计算梯度时,逆向计算
- 计算梯度需要的内存和计算时间是计算train_loss的两倍
Deep Neural Network
Current two layer neural network:

优化:
- 优化RELU(隐藏层), wider
增加linear层,layer deeper

- Performance: few parameters by deeper
随层级变高,获得的信息越综合,越符合目标

About t-model
- t-model只有在有大量数据时有效
- 今天我们才有高效的大数据训练方法:Better Regularization
- 难以决定适应问题的神经网络的规模,因此通常选择更大的规模,并防止过拟合
Avoid Overfit
Early Termination
- 当训练结果与验证集符合度下降时,就停止训练

Regulation
- 给神经网络里加一些常量,做一些限制,减少自由的参数
- L2 regularization

在计算train loss时,增加一个l2 norm作为新的损失,这里需要乘一个β(Hyper parameter),调整这个新的项的值
Hyper parameter:拍脑袋参数→_→
l2模的导数容易计算,即W本身
DropOut
最近才出现,效果极其好
- 从一个layer到另一个layer的value被称为activation
- 将一个layer到另一个layer的value的中,随机地取一半的数据变为0,这其实是将一半的数据直接丢掉
- 由于数据缺失,所以就强迫了神经网络学习redundant的知识,以作为损失部分的补充
- 由于神经网络中总有其他部分作为损失部分的补充,所以最后的结果还是OK的
- More robust and prevent overfit
如果这种方法不能生效,那可能就要使用更大的神经网络了
- 评估神经网络时,就不需要DropOut,因为需要确切的结果
- 可以将所有Activation做平均,作为评估的依据
因为我们在训练时去掉了一半的随机数据,如果要让得到Activation正确量级的平均值,就需要将没去掉的数据翻倍

觉得得我的文章对您有帮助的话,就给个star吧~
TensorFlow 深度学习笔记 从线性分类器到深度神经网络的更多相关文章
- TensorFlow深度学习笔记 文本与序列的深度模型
Deep Models for Text and Sequence 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎st ...
- 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...
- Google TensorFlow深度学习笔记
Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Gith ...
- UFLDL深度学习笔记 (五)自编码线性解码器
UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论&q ...
- UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化
UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化 主要思路 前面几篇所讲的都是围绕神经网络展开的,一个标志就是激活函数非线性:在前人的研究中,也存在线性激活函数的稀疏编码,该方法试图直接学习数据的特 ...
- UFLDL深度学习笔记 (六)卷积神经网络
UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像 ...
- UFLDL深度学习笔记 (三)无监督特征学习
UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较 ...
- Deep Learning.ai学习笔记_第一门课_神经网络和深度学习
目录 前言 第一周(深度学习引言) 第二周(神经网络的编程基础) 第三周(浅层神经网络) 第四周(深层神经网络) 前言 目标: 掌握神经网络的基本概念, 学习如何建立神经网络(包含一个深度神经网络), ...
- UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...
随机推荐
- CI(CodeIgniter)学习第一讲
一.CI的优势一. (1).CI是一个PHP框架:大家都知道PHP框架有很多,CI只是其中之一,框架是为了重用发明的.同样,CI的目标是实现让你比从零开始编写代码更快速地开发项目.CI可以将需要完成的 ...
- python运维开发(二十一)----文件上传和验证码+session
内容目录: 文件上传 验证码+session 文件和图片的上传功能 HTML Form表单提交,实例展示 views 代码 HTML ajax提交 原生ajax提交,XMLHttpRequest方式上 ...
- CSS3之背景色渐变
在css2时代,页面背景色渐变,按钮背景渐变效果主要是通过图片实现,css3中可通过 gradient 实现背景色渐变,图片作为一种资源,每次在页面加载时都要从服务器下载,这样如果页面很大需要渐变的效 ...
- QCoreApplication::processEvents();的作用与TApplication::ProcessMessages的作用完全相同,但是没想到这种用法还有缺点
手动事件处理 最基本的解决方案是明确要求Qt在计算的某些时刻处理等待事件.要做到这一点,必须定期调用QCoreApplication::processEvents(). 下面的例子显示如何做到这一点: ...
- 【Xamarin挖墙脚系列:IOS现有的设备SDK /OS/硬件一览】
附件下载: http://pan.baidu.com/s/1o7rsrUE
- Sed 与 Linux 等价命令代码鉴赏(转)
参考了 http://www.chinaunix.net/jh/24/307045.html sed http://bbs.chinauni ...
- 【Android病毒分析报告】 - ZooTiger “集恶意推广、隐私窃取、恶意吸费于一体”
本文章由Jack_Jia编写,转载请注明出处. 文章链接:http://blog.csdn.net/jiazhijun/article/details/11772379 作者:Jack_Jia ...
- C语言的本质(35)——共享库
库用于将相似函数打包在一个单元中.然后这些单元就可为其他开发人员所共享,并因此有了模块化编程这种说法- 即,从模块中构建程序.Linux支持两种类型的库,每一种库都有各自的优缺点.静态库包含在编译时静 ...
- Unix/Linux环境C编程入门教程(37) shell常用命令演练
cat命令 cat命令可以用来查看文件内容. cat [参数] 文件名. grep-指定文件中搜索指定字符内容. Linux的目录或文件. -path '字串' 查找路径名匹配所给字串的所有文件 ...
- 经典递归算法研究:hanoi塔的理解与实现
关于hanoi塔的原理以及概念,请Google,访问不了去百度. 主要设计到C中程序设计中递归的实现: 主代码实现如下: void hanoi(int src, int dest, int tmp, ...