剑指offer-面试题9.斐波拉契数列
题目一:写一个函数,输入n,求斐波拉契数列的第n项。
斐波拉契数列的定义如下:
{ n=;
f(n)={ n=;
{ f(n-)+f(n-) n>;
斐波拉契问题很明显我们会想到用递归来解决:
long long Fibonacci(unsigned int n)
{
if(n==)
return ;
if(n==)
return ; if(n>)
return Fibonacci(n-)+Fibonacci(n-);
}
这道题用递归解决思路很清晰,代码很简单,那么问题来了
根据马克思辩证主义思想,往往简单的思路会带来较大的
时间空间开销。在这种递归计算的过程中往往会计算很多
重复的项,比如计算f(6)时就需要计算f(5),f(4),计算f(5)时
会计算f(4),f(3)然而f(4)在之前计算f(6)的过程中就已经计算
过了。看似这不会带来很大的开销,但是我们这样想一想
斐波拉契中的每个数的计算都由两个数组成,然而这两个数
中就有一个是已重复计算了,相当于计算时间增加了1倍,效率
降低了一倍。
下面我们用非递归解法来解这道题:
#include <iostream>
using namespace std; long Fibonacci(unsigned int n)
{
long int answer[]={,};
if(n<)
return answer[n]; long int nums2=;
long int nums1=;
long int ans=; for(int i=;i<=n;i++)
{
ans=nums2+nums1;
nums1=nums2;
nums2=ans;
}
return ans;
} int main()
{
unsigned int data;
cout<<"Input the n: ";
cin>>data; cout<<"The answer is: "<<Fibonacci(data)<<endl;
return ;
}
运行截图:
当然剑指Offer一书还提到了另外两种方法:
1.由于在计算的时候有重复项,那么我们可以保存计算的中间项,当计算的时候如果找到
已经计算的重复项则不必重复计算
2.另外一种方法是时间复杂度为logn的方法,这种方法具体可以参考剑指offer一书。
剑指offer-面试题9.斐波拉契数列的更多相关文章
- 【剑指offer】9、斐波拉契数列
面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long ...
- 剑指Offer - 九度1387 - 斐波那契数列
剑指Offer - 九度1387 - 斐波那契数列2013-11-24 03:08 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.斐波那契数列的定义如下: ...
- 【剑指offer】7:斐波那契数列
题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1).假设 n≤39 解题思路: 斐波拉契数列:1,1,2,3,5,8--,总结 ...
- 剑指offer第二版-10.斐波那契数列
面试题10:斐波那契数列 题目要求: 求斐波那契数列的第n项的值.f(0)=0, f(1)=1, f(n)=f(n-1)+f(n-2) n>1 思路:使用循环从下往上计算数列. 考点:考察对递归 ...
- 剑指offer【07】- 斐波那契数列(java)
题目:斐波那契数列 考点:递归和循环 题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0),n<=39. 法一:递归法,不过递归比较慢, ...
- 剑指offer(7)斐波那契数列
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 题目分析 我们都知道斐波那契可以用递归,但是递归重复计算的部分太多了(虽然可以通过),但是这 ...
- 【剑指Offer】7、斐波那契数列
题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).假设n<=39. 解题思路: 斐波那契数列:0,1,1,2,3, ...
- 剑指offer——矩阵覆盖(斐波那契变形)
****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? cl ...
- 【剑指offer】面试题 10. 斐波那契数列
面试题 10. 斐波那契数列 题目一:求斐波那契数列的第n项 题目描述:求斐波拉契数列的第n项 写出一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项.斐波拉契数列定义如下: C++ 实现 ...
随机推荐
- 第05讲- DDMS中logcat的使用
第05讲 DDMS中logcat的使用 1.DDMS DDMS 的全称是Dalvik Debug Monitor Service,是 Android 开发环境中的Dalvik虚拟机调试监控服务.DDM ...
- 【转】网络视频监控P2P解决方案
一.摘要 本文分析了日益增长的民用级别家庭和个人网络视频监控市场的需求特点,并给出了一种经济可行易于大规模部署的P2P解决方案. 由于篇幅有限,本文只给出了方案的思路,未对更深入的技术细节做详细的论述 ...
- qt绘制设备
# -*- coding: utf-8 -*- # python:2.x __author__ = 'Administrator' from PyQt4.QtGui import * from Py ...
- android:launchMode="singleTask" 与 onNewIntent(Intent intent) 的用法
最近项目开发中用到了android:launchMode="singleTask" 和 onNewIntent(Intent intent)两个特性,现总结一下经验: androi ...
- HDU 1085 Holding Bin-Laden Captive! (母函数)
Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- boost.asio系列——Timer
同步Timer asio中提供的timer名为deadline_timer,它提供了超时计时的功能.首先以一个最简单的同步Timer为例来演示如何使用它. #include<iostream&g ...
- LR脚本自定义显示Controller虚拟用户状态
在场景监控的过程中,想知道场景运行时Vusers的运行状态以及每一个Vuser虚拟用户在本次场景运行的过程共迭代了多少次,那么就需要在VuGen脚本中自定义显示虚拟用户状态信息. 代码如下: stat ...
- J2EE 中 The function valueOf must be used with a prefix when a default namespace is not specified 错误
jsp页面中,JSTL El表达式字符串比较常用方法 fn:contains 判断字符串是否包含另外一个字符串 <c:if test="${fn:contains(name, sear ...
- asp.net页面按Enter键IE不提交表单
//当按下回车键时,让指定的按钮获取指定的文本框的事件 this.txtFNick.Attributes.Add("onkeydown", " ...
- Android开发实现透明通知栏
这个特性是andorid4.4支持的,最少要api19才可以使用,也就是说如果Android的机子是低于4.4,沉浸通知栏是没有效果的.下面介绍一下使用的方法,非常得简单. public void i ...