机器学习之分类回归树(python实现CART)
之前有文章介绍过决策树(ID3)。简单回顾一下:ID3每次选取最佳特征来分割数据,这个最佳特征的判断原则是通过信息增益来实现的。按照某种特征切分数据后,该特征在以后切分数据集时就不再使用,因此存在切分过于迅速的问题。ID3算法还不能处理连续性特征。
下面简单介绍一下其他算法:
CART 分类回归树
CART是Classification And Regerssion Trees的缩写,既能处理分类任务也能做回归任务。
CART树的典型代表时二叉树,根据不同的条件将分类。
CART树构建算法
与ID3决策树的构建方法类似,直接给出CART树的构建过程。首先与ID3类似采用字典树的数据结构,包含以下4中元素:
- 待切分的特征
- 待切分的特征值
- 右子树。当不再需要切分的时候,也可以是单个值
- 左子树,类似右子树。
过程如下:
- 寻找最合适的分割特征
- 如果不能分割数据集,该数据集作为一个叶子节点。
- 对数据集进行二分割
- 对分割的数据集1重复1, 2,3 步,创建右子树。
- 对分割的数据集2重复1, 2,3 步,创建左子树。
明显的递归算法。
通过数据过滤的方式分割数据集,返回两个子集。
def splitDatas(rows, value, column):
# 根据条件分离数据集(splitDatas by value, column)
# return 2 part(list1, list2)
list1 = []
list2 = []
if isinstance(value, int) or isinstance(value, float):
for row in rows:
if row[column] >= value:
list1.append(row)
else:
list2.append(row)
else:
for row in rows:
if row[column] == value:
list1.append(row)
else:
list2.append(row)
return list1, list2
复制代码
划分数据点
创建二进制决策树本质上就是递归划分输入空间的过程。
代码如下:
# gini()
def gini(rows):
# 计算gini的值(Calculate GINI)
length = len(rows)
results = calculateDiffCount(rows)
imp = 0.0
for i in results:
imp += results[i] / length * results[i] / length
return 1 - imp
复制代码
构建树
def buildDecisionTree(rows, evaluationFunction=gini):
# 递归建立决策树, 当gain=0,时停止回归
# build decision tree bu recursive function
# stop recursive function when gain = 0
# return tree
currentGain = evaluationFunction(rows)
column_lenght = len(rows[0])
rows_length = len(rows)
best_gain = 0.0
best_value = None
best_set = None
# choose the best gain
for col in range(column_lenght - 1):
col_value_set = set([x[col] for x in rows])
for value in col_value_set:
list1, list2 = splitDatas(rows, value, col)
p = len(list1) / rows_length
gain = currentGain - p * evaluationFunction(list1) - (1 - p) * evaluationFunction(list2)
if gain > best_gain:
best_gain = gain
best_value = (col, value)
best_set = (list1, list2)
dcY = {'impurity': '%.3f' % currentGain, 'sample': '%d' % rows_length}
#
# stop or not stop
if best_gain > 0:
trueBranch = buildDecisionTree(best_set[0], evaluationFunction)
falseBranch = buildDecisionTree(best_set[1], evaluationFunction)
return Tree(col=best_value[0], value = best_value[1], trueBranch = trueBranch, falseBranch=falseBranch, summary=dcY)
else:
return Tree(results=calculateDiffCount(rows), summary=dcY, data=rows)
复制代码
上面代码的功能是先找到数据集切分的最佳位置和分割数据集。之后通过递归构建出上面图片的整棵树。
剪枝
在决策树的学习中,有时会造成决策树分支过多,这是就需要去掉一些分支,降低过度拟合。通过决策树的复杂度来避免过度拟合的过程称为剪枝。
后剪枝需要从训练集生成一棵完整的决策树,然后自底向上对非叶子节点进行考察。利用测试集判断是否将该节点对应的子树替换成叶节点。
代码如下:
def prune(tree, miniGain, evaluationFunction=gini):
# 剪枝 when gain < mini Gain, 合并(merge the trueBranch and falseBranch)
if tree.trueBranch.results == None:
prune(tree.trueBranch, miniGain, evaluationFunction)
if tree.falseBranch.results == None:
prune(tree.falseBranch, miniGain, evaluationFunction)
if tree.trueBranch.results != None and tree.falseBranch.results != None:
len1 = len(tree.trueBranch.data)
len2 = len(tree.falseBranch.data)
len3 = len(tree.trueBranch.data + tree.falseBranch.data)
p = float(len1) / (len1 + len2)
gain = evaluationFunction(tree.trueBranch.data + tree.falseBranch.data) - p * evaluationFunction(tree.trueBranch.data) - (1 - p) * evaluationFunction(tree.falseBranch.data)
if gain < miniGain:
tree.data = tree.trueBranch.data + tree.falseBranch.data
tree.results = calculateDiffCount(tree.data)
tree.trueBranch = None
tree.falseBranch = None
复制代码
当节点的gain小于给定的 mini Gain时则合并这两个节点.。
最后是构建树的代码:
if __name__ == '__main__':
dataSet = loadCSV()
decisionTree = buildDecisionTree(dataSet, evaluationFunction=gini)
prune(decisionTree, 0.4)
test_data = [5.9,3,4.2,1.5]
r = classify(test_data, decisionTree)
print(r)
复制代码
可以打印decisionTree可以构建出如如上的图片中的决策树。
后面找一组数据测试看能否得到正确的分类。
完整代码和数据集请查看:
github:CART
总结:
- CART决策树
- 分割数据集
- 递归创建树
机器学习之分类回归树(python实现CART)的更多相关文章
- 分类-回归树模型(CART)在R语言中的实现
分类-回归树模型(CART)在R语言中的实现 CART模型 ,即Classification And Regression Trees.它和一般回归分析类似,是用来对变量进行解释和预测的工具,也是数据 ...
- 秒懂机器学习---分类回归树CART
秒懂机器学习---分类回归树CART 一.总结 一句话总结: 用决策树来模拟分类和预测,那些人还真是聪明:其实也还好吧,都精通的话想一想,混一混就好了 用决策树模拟分类和预测的过程:就是对集合进行归类 ...
- 机器学习技法-决策树和CART分类回归树构建算法
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.决策树(Decision Tree).口袋(Bagging),自适应增 ...
- 分类回归树(CART)
概要 本部分介绍 CART,是一种非常重要的机器学习算法. 基本原理 CART 全称为 Classification And Regression Trees,即分类回归树.顾名思义,该算法既 ...
- CART(分类回归树)
1.简单介绍 线性回归方法可以有效的拟合所有样本点(局部加权线性回归除外).当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的想法一个是困难一个是笨拙.此外,实际中很多问题为非线性的,例如常 ...
- 连续值的CART(分类回归树)原理和实现
上一篇我们学习和实现了CART(分类回归树),不过主要是针对离散值的分类实现,下面我们来看下连续值的cart分类树如何实现 思考连续值和离散值的不同之处: 二分子树的时候不同:离散值需要求出最优的两个 ...
- 利用CART算法建立分类回归树
常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后 ...
- CART决策树(分类回归树)分析及应用建模
一.CART决策树模型概述(Classification And Regression Trees) 决策树是使用类似于一棵树的结构来表示类的划分,树的构建可以看成是变量(属性)选择的过程,内部节 ...
- 决策树的剪枝,分类回归树CART
决策树的剪枝 决策树为什么要剪枝?原因就是避免决策树“过拟合”样本.前面的算法生成的决策树非常的详细而庞大,每个属性都被详细地加以考虑,决策树的树叶节点所覆盖的训练样本都是“纯”的.因此用这个决策树来 ...
随机推荐
- CF633(div.2)C. Powered Addition
题目描述 http://codeforces.com/contest/1339/problem/C 给定一个长度为 \(n\) 的无序数组,你可以在第 \(x\) 秒进行一次下面的操作. 从数组选取任 ...
- Hadoop(一) centos7 jdk安装,hadoop安装|3
安装JDK 下载jdk https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 选择最 ...
- public、private、protected继承区别
- tomcat通过tomcat 安装根目录下的conf-Catalina-localhost目录发布项目详解
tomcat通过conf-Catalina-localhost目录发布项目详解 Tomcat发布项目的方式大致有三种,但小菜认为通过在tomcat的conf/Catalina/localhost目 ...
- Pandownload作者被抓之后
近日,pandownload作者被抓,可以说是圈内的大事件,被抓之后, Pandownload 已经是打不开,用不了了 就在我为此感到惋惜的时候,竟然有出来个shengdownload 先来一块看看这 ...
- sqli-labs通关----11~20关
第十一关 从第十一关开始,就开始用post来提交数据了,我们每关的目的都是获取users表下password字段的内容. post是一种数据提交方式,它主要是指数据从客户端提交到服务器端,例如,我们常 ...
- 使用 PyQt5 实现图片查看器
一.前言 在学习 PyQt5 的过程中我会不断地做一些小的 Demo,用于让自己能够更好地理解和学习,这次要做的就是一个图片查看器,主要功能包括打开图片.拖动图片.放大和缩小图片. 最终实现的图片查看 ...
- 计算机视觉中的对象检测,Python用几段代码就能实现
目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶.视频监控.工业质检.医疗诊断等 ...
- X - Ehab and Path-etic MEXs CodeForces - 1325C
MMP,差一点就做对了. 题目大意:给你一个树,对这个树的边进行编号,编号要求从0到n-1,不可重复,要求MEX(U,V)尽可能的小, MEX(x,y)的定义:从x到y的简单路径上,没有出现的最小编号 ...
- sorted排序的两个方法 - Python
在给列表排序时,sorted非常好用,语法如下: sorted(iterable[, cmp[,key[,reverse]]]) 简单列表排序,很容易完成,sorted(list)返回的对象就是列表结 ...