张量

张量是tensorflow中的基本数据结构

# 全零张量
zero_tsr = tf.zeros([row_dim, col_dim])
# 全1张量
ones_tsr = tf.ones([row_dim, col_dim])
# 填充张量
filled_tsr = tf.fill([row_dim, col_dim], 42)
# 常量
constant_tsr1 = tf.constant([1,2,3])
constant_tsr2 = tf.constant(42, [row_dim, col_dim])
# 形状相似的张量
zeros_similar = tf.zeros_like(constant_tsr)
ones_similar = tf.ones_like(constant_tsr)
# 序列张量
linear_tsr = tf.linspace(start=0., stop=1., num=3)
inter_seq_tsr = tf.range(start=6, limit=15, delta=3) # 不包括limit
# 随机张量
randunif_tsr = tf.random_uniform( # 均匀分布
[row_dim, col_dim], # 维度
minval=0, maxval=1) # 最大值(不包含),最小值
randnorm_tsr = tf.random_normal( # 正态分布
[row_dim, col_dim], #维度
mean = 0.0, # 均值
stddev = 1.0) # 标准差
truncnorm_tsr = tf.truncated_normal( # 截断正态分布,只取两个标准差之间的数
[row_dim, col_dim],
mean = 0.0,
stddec = 1.0)
## 张量随机洗牌,对每列
shuffled_output = tf.random_shuffle(input_tensor)
## 张量随机裁剪
cropped_output = tf.random_crop(input_tensor, crop_size) # 把张量随机裁剪成指定尺寸
cropped_image = tf.random_crop(my_image, [height/2, width/2, 3]) # 例如把图片长宽缩短一半

变量

tf.Variable()中传入一个张量就可以创建变量了

my_var = tf.Variable(tf.zeros([row_dim, col_dim]))

延伸学习

可以使用tf.convert_to_tensor()函数将任意numpy数组转换为张量,或者将常量转换为一个张量。

创建变量并初始化

my_var = tf.Variable(tf.zeros([2,3]))
sess = tf.Session()
initialize_op = tf.global_variable_initializer()
sess.run(initialize_op)

占位符

占位符仅仅声明数据位置,用于传入数据到计算图。占位符通过feed_dict参数获取数据。

sess = tf.Session()
x = tf.placeholder(shape=[2,2], dtype=tf.float32)
y = tf.identity(x) # return a tensor with the same shape and contents as input.
x_vals = np.random.rand(2,2)
sess.run(y, feed_dict={x:x_vals})

变量初始化延伸

tf.global_variables_initializer()函数会一次性初始化所创建的所有变量,使用方法如下:

initializer_op = tf.global_variables_initializer()

但是,如果是基于已经初始化的变量进行初始化,则必须按顺序初始化

sess = tf.Session()
first_var = tf.Variable(tf.zeros([2,3]))
sess.run(first_var.initializer)
second_var = tf.Variable(tf.zeros_like(first_var))
sess.run(second_var.initializer)

矩阵操作

import tensorflow as tf
sess = tf.Session()
identity_matrix = tf.diag([1., 1., 1.]) # 用tf.diag创建对角矩阵
A = tf.truncated_normal([2, 3])
B = tf.fill([2, 3], 5.0)
C = tf.random_uniform([3, 2])
D = tf.convert_to_tensor(np.array([[1., 2., 3.],
[-3., -7., -1.],
[0., 5., -2.]]))
# 矩阵加法
print(sess.run(A+B))
print(sess.run(tf.add(A,B)))
# 矩阵减法
print(sess.run(A-B))
print(sess.run(tf.subtract(A,B))
# 矩阵乘法
print(sess.run(tf.matmul(B, identity_matrix)))
# 矩阵转置
print(sess.run(tf.transpose(C)))
# 矩阵行列式
print(sess.run(tf.matrix_determinant(D)))
# 矩阵的逆
print(sess.run(tf.matrix_inverse(D)))
# 矩阵Cholesky分解
print(sess.run(tf.cholesky(identity_matrix)))
# 矩阵特征值和特征向量
print(sess.run(tf.self_adjoint_eig(D)))

矩阵的其他操作

add()、subtract()、multiply()、div()加、减、乘、除法,都是逐元素操作(elememt-wise)

# 注意div()对整数操作会向下取整
print(sess.run(tf.div(3,4))) # 输出为零
# truediv()会先转换为浮点数再相除
print(sess.run(tf.truediv(3,4))) # 输出0.75
# 对浮点数进行整数除法,可以使用floordiv()函数
print(sess.run(tf.floordiv(3.0, 4.0))) # 输出 0.0

另一个重要的函数是取模运算mod()

print(sess.run(tf.mod(22.0, 5.0))) # 输出 2.0

cross()函数计算两个张量间的点积。 (这个不是很懂?~?!)

print(sess.run(tf.cross([1., 0., 0.], [0., 1., 0.])))

常用数学函数列表

函数 功能
abs() 返回输入参数张量的绝对值
ceil() 返回输入参数张量的向上取整结果
cos() 返回输入参数张量的余弦值
exp() 返回输入参数张量的自然常数e的指数
floor() 返回输入参数张量的向下取整结果
inv() 返回输入参数张量的倒数
log() 返回输入参数张量的自然对数
maximum() 返回两个输入参数张量中的最大值
minimum() 返回两个输入参数张量中的最小值
neg() 返回输入参数张量的负值
pow() 返回输入参数第一个张量的第二个张量次幂
round() 返回输入参数张量的四舍五入结果
rsqrt() 返回输入参数张量的平方根的倒数
sign() 根据输入参数张量的符号,返回-1, 0 或1
sin() 返回输入参数张量的正弦值
square() 返回输入参数张量的平方

特殊数学函数列表
注:这里的函数不是很懂,日后用到了再深究

函数 功能
digamma() 函数, lgamma()函数导数
erf() 返回张量的高斯误差函数
erfc() 返回张量的互补误差函数
igamma() 返回下不完全函数
igammac() 返回上不完全全函数
lbeta() 返回贝塔函数绝地值得自然对数
lgamma() 返回函数绝对值的自然对数
squared_difference() 返回两个张量间差值的平方

实现激励函数

激励函数主要是为计算图归一化返回结果而引进的非线性部分。激励函数位于tensorflow的nn库(neural network, nn)。

激励函数 定义 备注
tf.nn.relu() max(0, x) 大于零取原值,小于零取零
tf.nn.relu6() min(6, max(0, x)) 大于六取六,其他与relu一样
tf.nn.sigmoid() 0到1之间平滑的s曲线
tf.nn.tanh() -1到1之间平滑的s型曲线
softsign() 符号函数的连续估计
softplus() ReLU函数的平滑版
tf.nn.elu() ……

Tensorflow从0到1(2)之基础知识的更多相关文章

  1. 三分钟快速上手TensorFlow 2.0 (上)——前置基础、模型建立与可视化

    本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(sha ...

  2. ZYNQ笔记(0):C语言基础知识复习

    ZYNQ的SDK是用C语言进行开发的,C语言可以说是当今理工类大学生的必备技能.我本科学C语言时就是对付考试而已,导致现在学ZYNQ是一脸懵逼.现在特开一帖,整理一下C语言的基础知识. 一.定义 1. ...

  3. java8新特性视频、spring4.0视频讲解,javaee基础知识讲解等网址汇总

    1.http://ke.atguigu.com/     海量视频首页 2.http://ke.atguigu.com/course/56    java8新特性学习地址

  4. 三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署

    本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train. ...

  5. C# 基础知识系列-13 常见类库(三)

    0. 前言 在<C# 基础知识系列- 13 常见类库(二)>中,我们介绍了一下DateTime和TimeSpan这两个结构体的内容,也就是C#中日期时间的简单操作.本篇将介绍Guid和Nu ...

  6. C# 基础知识系列- 16 开发工具篇

    0. 前言 这是C# 基础知识系列的最后一个内容讲解篇,下一篇是基础知识-实战篇.这一篇主要讲解一下C#程序的结构和主要编程工具. 1. 工具 工欲善其事必先利其器,在实际动手之前我们先来看看想要编写 ...

  7. tensorflow笔记(一)之基础知识

    tensorflow笔记(一)之基础知识 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7399701.html 前言 这篇no ...

  8. 【深度学习与TensorFlow 2.0】入门篇

    注:因为毕业论文需要用到相关知识,借着 TF 2.0 发布的时机,重新捡起深度学习.在此,也推荐一下优达学城与 TensorFlow 合作发布的TF 2.0入门课程,下面的例子就来自该课程. 原文发布 ...

  9. Tensorflow深度学习之十二:基础图像处理之二

    Tensorflow深度学习之十二:基础图像处理之二 from:https://blog.csdn.net/davincil/article/details/76598474   首先放出原始图像: ...

随机推荐

  1. F. Dominant Indices

    题意:求每个点的子树中哪一层节点数最多,如果有节点数最多不唯一,取层数最小的. 题解:dus on tree 基本想法是对每一个节点都构建一个deep数组,然后从底向上更新过来,但是这样空间复杂度和时 ...

  2. 两圆相交求面积 hdu5120

    转载 两圆相交分如下集中情况:相离.相切.相交.包含. 设两圆圆心分别是O1和O2,半径分别是r1和r2,设d为两圆心距离.又因为两圆有大有小,我们设较小的圆是O1. 相离相切的面积为零,代码如下: ...

  3. linux 去除^M 换行符

    一般,在windows下写的shell脚本,都会去linux执行,都会有^M 符号,那么怎么去除呢? 第一种方法:cat -A filename 就可以看到windows下的断元字符 ^M要去除他,最 ...

  4. ubuntu18.04.4安装k8s

    k8s部署 1.集群所有主机关闭swap sudo swapoff -a sudo sed -i 's/.*swap.*/#&/' /etc/fstab 如果重启后swap还是自动挂载执行sy ...

  5. 实现.Net程序中OpenTracing采样和上报配置的自动更新

    前言 OpenTracing是一个链路跟踪的开放协议,已经有开源的.net实现:opentracing-csharp,同时支持.net framework和.net core,Github地址:htt ...

  6. Telegraf和Grafana监控多平台上的SQL Server

    问题 SQL Server在很多企业中部署在多个平台上(Windows,Linux和Container),需要一种能支持多平台的解决方案用于收集和展示相关的监控指标. 我选择企业中比较流行的监控展示工 ...

  7. dell5460笔记本电脑ubuntu18.04系统音频驱动的安装和使用

    一.背景: 近期使用dell5460笔记本在ubuntu系统下观看视频,发现没有声音,考虑安装音频驱动. 二.音频驱动的安装 linux系统的音频驱动基于ALSA(即Advanced Linux So ...

  8. 面试题: hashset如何保证值不会被重复的

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 众所周知,HashSet 的值是不可能被重复的,在业务上经常被用来做数据去重的操作,那么,其内部究竟是怎 ...

  9. 如何获取CSDN的积分?

    个人感觉就是写博客就给积分 具体给多少? CSDN应该有自己的积分规则 总之一句话:写博客涨积分

  10. Java实现 LeetCode 166 分数到小数

    166. 分数到小数 给定两个整数,分别表示分数的分子 numerator 和分母 denominator,以字符串形式返回小数. 如果小数部分为循环小数,则将循环的部分括在括号内. 示例 1: 输入 ...