[题解] LuoguP6075 [JSOI2015]子集选取
ps: 下面\(n\)和\(k\)好像和题目里的写反了。。。将就着看吧\(qwq\)
暴力打个表答案就出来了?
先写个结论,答案就是\(2^{nk}\)。
为啥呢?
首先你需要知道,因为一个集合是另一个集合的子集这个东西,集合中的一个元素对其他元素并不会有影响,完全可以把元素分开来看,然后将答案乘起来。
那么转化成一个好像好解决点的问题,就是\(k = 1\)时怎么做。
因为只有一个元素,在加上要求是\(A_{i,j} \subseteq A_{i-1,j},A_{i,j} \subseteq A_{i,j-1}\),所以这个三角矩阵一定是上面一部分有这个元素,而下面一部分没有,比方说两个用一个元素构成的满足要求的\(5 \times 5\)的三角矩阵
(0表示该集合没有这个元素,1表示有)
注意到虚线所描出来的轮廓,对于一个\(n \times n\)的三角矩阵,只有一个元素的方案数就是从左下角那个点走\(n\)步,每一步只能向上或向有走的方案数,因为这样走出的路径一定是一个合法的轮廓,轮廓的上面就代表有该元素,下面就没有。
那么这样的方案数就是\(2^n\)。
因为有\(k\)种元素,所以乘起来就是\(2^{nk}\)
快速幂算一下就好了。
\(Code:\)
#include <bits/stdc++.h>
using namespace std;
const int P=1e9+7;
inline int fpow(int x,int y){
int ret=1; for(x%=P;y;y>>=1,x=1ll*x*x%P)
if(y&1) ret=1ll*ret*x%P;
return ret;
}
int main(){
int n,m; scanf("%d%d",&n,&m);
printf("%d\n",fpow(2,1ll*n*m%(P-1)));
return 0;
}
[题解] LuoguP6075 [JSOI2015]子集选取的更多相关文章
- BZOJ4475[Jsoi2015]子集选取——递推(结论题)
题目描述 输入 输入包含一行两个整数N和K,1<=N,K<=10^9 输出 一行一个整数,表示不同方案数目模1,000,000,007的值. 样例输入 2 2 样例输出 16 可以发现 ...
- BZOJ4475 [Jsoi2015]子集选取
Description 有一些\(\{1\dots n\}\)的子集\(A_{i,j}, 1\leq j\leq i\leq k\)共\(\frac{k(k+1)}2\)个,满足\(A_{i,j}\s ...
- bzoj 4475: [Jsoi2015]子集选取
233,扒题解的时候偷瞄到这个题的题解了,,GG 暴力发现是2^(nm),然后就是sb题了 #include <bits/stdc++.h> #define LL long long us ...
- 洛谷 P6075 [JSOI2015]子集选取
链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...
- BZOJ4475: [Jsoi2015]子集选取【找规律】【数学】
Description Input 输入包含一行两个整数N和K,1<=N,K<=10^9 Output 一行一个整数,表示不同方案数目模1,000,000,007的值. Sample In ...
- [BZOJ4475][JSOI2015]子集选取[推导]
题意 题目链接 分析 显然可以看成一个位数为 \(n\) 的二进制数然后每一位分开考虑然后求和.最后的答案是 \(w^n\) 的形式. 考虑一个dp. 定义状态 \(f_{i}\) 表示选择了长度为 ...
- BZOJ4475 JSOI2015子集选取(动态规划)
数据范围过大说明这个题和组合一点关系也没有,答案基本上肯定是ab的形式了.暴力打表感觉不太好写,找到当年的题面发现还有个样例是6 40 401898087,于是暴力找ab=401898087的数,发现 ...
- 【BZOJ4475】 [Jsoi2015]子集选取
题目描述 数据范围 \(1\leq N,K \leq 10^9\) \(solution\) 集合S中每个元素互不影响,不妨依次考虑其中一个元素在三角形中的出现情况 问题转化为一个\(0/1\)的三角 ...
- [JSOI 2015] 子集选取
4475: [Jsoi2015]子集选取 Time Limit: 1 Sec Memory Limit: 512 MBSubmit: 363 Solved: 255[Submit][Status] ...
随机推荐
- 【剑指Offer面试编程题】题目1373:整数中1出现的次数--九度OJ
题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU发来求助信,希望亲们能帮帮他.问题是:求出1~13的整数中1出现的次数,并算出100~130 ...
- OpenCV数字识别
输入命令: conda install opencv 返回信息:
- 二十、oracle通过复合索引优化查询及不走索引的8种情况
1. 理解ROWID ROWID是由Oracle自动加在表中每行最后的一列伪列,既然是伪列,就说明表中并不会物理存储ROWID的值:你可以像使用其它列一样使用它,只是不能对该列的值进行增.删.改操作: ...
- Java的equals方法实现及其细节
判断两个对象是否等价,是OOP编程中常见的需求(下面围绕Java来进行阐述). 考虑这样几种情况:通过某个特征值来判断两个对象是否“等价”,当这两个对象等价时,判断结果为true,否则结果为false ...
- 分布估计算法解决TSP问题
分布估计算法解决旅行商问题(TSP) TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述 ...
- 解题报告:luogu P1516 青蛙的约会
题目链接:P1516 青蛙的约会 考察拓欧与推式子\(qwq\). 题意翻译? 求满足 \[\begin{cases}md+x\equiv t\pmod{l}\\nd+y\equiv t\pmod{l ...
- jquery源码部分分析
1.整体架构和如何辨别浏览器端和node端 自执行函数,判断在什么端,如果在浏览器端就执行factory函数 //(function(){a,b})(a,b) //jq大架构,闭包,自执行函数,传入函 ...
- css解决字段不换行
1.自动换行 <div style="widht:100%;height:100%;word-wrap: break-word">啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊 ...
- 无线渗透--wifiphisher之wifi钓鱼获取wifi密码
本来是想试验一下暴力破解的,但是由于字典太大,跑的时间也比较长,于是使用了钓鱼的方法. 先说一下wifiphisher钓鱼获取wifi密码的原理: wifiphisher对于你在攻击中选定的wifi会 ...
- 怎样快速高效的定义Django的序列化器
1.使用Serializer方法自己创建一个序列化器 先写一个简单的例子 class BookInfoSerializer(serializers.Serializer): ""& ...