基本要素

  • 状态 \(N\)个

  • 状态序列 \(S = s_1,s_2,...\)

  • 观测序列 \(O=O_1,O_2,...\)

  • \(\lambda(A,B,\pi)\)

    • 状态转移概率 \(A = \{a_{ij}\}\)
    • 发射概率 \(B = \{b_{ik}\}\)
    • 初始概率分布 \(\pi = \{\pi_i\}\)
  • 观测序列生成过程

    • 初始状态
    • 选择观测
    • 状态转移
    • 返回step2

HMM三大问题

  • 概率计算问题(评估问题)

给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),计算 \(P(O|\lambda)\),即计算观测序列的概率

  • 解码问题

给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),找到对应的状态序列 \(S\)

  • 学习问题

给定观测序列 \(O=O_1O_2...O_T\),找到模型参数 \(\lambda (A,B,\pi)\),以最大化 \(P(O|\lambda)\),

概率计算问题

给定模型 \(\lambda\) 和观测序列 \(O\),如何计算\(P(O| \lambda)\)?

暴力枚举每一个可能的状态序列 \(S\)

  • 对每一个给定的状态序列

    \[P(O|S,\lambda) = \prod^T_{t=1} P(O_t|s_t,\lambda) =\prod^T_{t=1} b_{s_tO_t}
    \]

  • 一个状态序列的产生概率

    \[P(S|\lambda) = P(s_1)\prod^T_{t=2}P(s_t|s_{t-1})=\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}
    \]

  • 联合概率

    \[P(O,S|\lambda) = P(S|\lambda)P(O|S,\lambda) =\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}\prod^T_{t=1} b_{s_tO_t}
    \]

  • 考虑所有的状态序列

    \[P(O|\lambda)=\sum_S\pi_1b_{s_1O_1}\prod^T_{t=2}a_{s_{t-1}s_t}b_{s_tO_t}
    \]

\(O\) 可能由任意一个状态得到,所以需要将每个状态的可能性相加。

这样做什么问题?时间复杂度高达 \(O(2TN^T)\)。每个序列需要计算 \(2T\) 次,一共 \(N^T\) 个序列。

前向算法

在时刻 \(t\),状态为 \(i\) 时,前面的时刻观测到 \(O_1,O_2, ..., O_t\) 的概率,记为 \(\alpha _i(t)\) :

\[\alpha_{i}(t)=P\left(O_{1}, O_{2}, \ldots O_{t}, s_{t}=i | \lambda\right)
\]

当 \(t=1\) 时,输出为 \(O_1\),假设有三个状态,\(O_1\) 可能是任意一个状态发出,即

\[P(O_1|\lambda) = \pi_1b_1(O_1)+\pi_2b_2(O_1)+\pi_2b_3(O_1) = \alpha_1(1)+\alpha_2(1)+\alpha_3(1)
\]

当 \(t=2\) 时,输出为 \(O_1O_2\) ,\(O_2\) 可能由任一个状态发出,同时产生 \(O_2\) 对应的状态可以由 \(t=1\) 时刻任意一个状态转移得到。假设 \(O_2\) 由状态 1 发出,如下图

\[P(O_1O_2,s_2=q_1|\lambda) = \pi_1b_1(O_1)a_{11}b_1(O_2)+\pi_2b_2(O_1)a_{21}b_1(O_2)+\pi_2b_3(O_1)a_{31}b_1(O_2) \\
=\bold{\alpha_1(1)}a_{11}b_1(O_2)+\bold{\alpha_2(1)}a_{21}b_1(O_2)+\bold{\alpha_3(1)}a_{31}b_1(O_2) = \bold{\alpha_1(2)}
\]

同理可得 \(\alpha_2(2),\alpha_3(2)\)

\[\bold{\alpha_2(2)} = P(O_1O_2,s_2=q_2|\lambda)
=\bold{\alpha_1(1)}a_{12}b_2(O_2)+\bold{\alpha_2(1)}a_{22}b_2(O_2)+\bold{\alpha_3(1)}a_{32}b_2(O_2)
\\
\bold{\alpha_3(2)} = P(O_1O_2,s_2=q_3|\lambda)
=\bold{\alpha_1(1)}a_{13}b_3(O_2)+\bold{\alpha_2(1)}a_{23}b_3(O_2)+\bold{\alpha_3(1)}a_{33}b_3(O_2)
\]

所以

\[P(O_1O_2|\lambda) =P(O_1O_2,s_2=q_1|\lambda)+ P(O_1O_2,s_2=q_2|\lambda) +P(O_1O_2,s_2=q_3|\lambda)\\
= \alpha_1(2)+\alpha_2(2)+\alpha_3(2)
\]

所以前向算法过程如下:

​ step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)

​ step2:计算 \(\alpha_i(t) = (\sum^{N}_{j=1} \alpha_j(t-1)a_{ji})b_i(O_{t})\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i(T)\)

相比暴力法,时间复杂度降低了吗?

当前时刻有 \(N\) 个状态,每个状态可能由前一时刻 \(N\) 个状态中的任意一个转移得到,所以单个时刻的时间复杂度为 \(O(N^2)\),总时间复杂度为 \(O(TN^2)\)

代码实现

例子:

假设从三个 袋子 {1,2,3}中 取出 4 个球 O={red,white,red,white},模型参数\(\lambda = (A,B,\pi)\) 如下,计算序列O出现的概率

#状态 1 2 3
A = [[0.5,0.2,0.3],
	 [0.3,0.5,0.2],
	 [0.2,0.3,0.5]]

pi = [0.2,0.4,0.4]

# red white
B = [[0.5,0.5],
	 [0.4,0.6],
	 [0.7,0.3]]

​ step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)

​ step2:计算 \(\alpha_i(t) = (\sum^{N}_{j=1} \alpha_j(t-1)a_{ji})b_i(O_{t})\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i( T)\)

#前向算法
def hmm_forward(A,B,pi,O):
    T = len(O)
    N = len(A[0])
    #step1 初始化
    alpha = [[0]*T for _ in range(N)]
    for i in range(N):
        alpha[i][0] = pi[i]*B[i][O[0]]

    #step2 计算alpha(t)
    for t in range(1,T):
        for i in range(N):
            temp = 0
            for j in range(N):
                temp += alpha[j][t-1]*A[j][i]
            alpha[i][t] = temp*B[i][O[t]]

    #step3
    proba = 0
    for i in range(N):
        proba += alpha[i][-1]
    return proba,alpha

A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
pi = [0.2,0.4,0.4]
O = [0,1,0,1]
hmm_forward(A,B,pi,O)  #结果为 0.06009

结果

后向算法

在时刻 \(t\),状态为 \(i\) 时,观测到 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率,记为 \(\beta _i(t)\) :

\[\beta_{i}(t)=P\left(O_{t+1},O_{t+2}, ..., O_T | s_{t}=i, \lambda\right)
\]

当 \(t=T\) 时,由于 \(T\) 时刻之后为空,没有观测,所以 \(\beta_i(t)=1\)

当 \(t = T-1\) 时,观测 \(O_T\) ,\(O_T\) 可能由任意一个状态产生

\[\beta_i(T-1) = P(O_T|s_{t}=i,\lambda) = a_{i1}b_1(O_T)\beta_1(T)+a_{i2}b_2(O_T)\beta_2(T)+a_{i3}b_3(O_T)\beta_3(T)
\]

当 \(t=1\) 时,观测为 \(O_{2},O_{3}, ..., O_T\)

\[\begin{aligned}
\beta_1(1)
&= P(O_{2},O_{3}, ..., O_T|s_1=1,\lambda)\\
&=a_{11}b_1(O_2)\beta_1(2)+a_{12}b_2(O_2)\beta_2(2)+a_{13}b_3(O_2)\beta_3(2)
\\
\quad
\\
\beta_2(1)
&= P(O_{2},O_{3}, ..., O_T|s_1=2,\lambda)\\
&=a_{21}b_1(O_2)\beta_1(2)+a_{22}b_2(O_2)\beta_2(2)+a_{23}b_3(O_2)\beta_3(2)
\\
\quad
\\
\beta_3(1)
&=P(O_{2},O_{3}, ..., O_T|s_1=3,\lambda)\\
&=a_{31}b_1(O_2)\beta_1(2)+a_{32}b_2(O_2)\beta_2(2)+a_{33}b_3(O_2)\beta_3(2)
\end{aligned}
\]

所以

\[P(O_{2},O_{3}, ..., O_T|\lambda) = \beta_1(1)+\beta_2(1)+\beta_3(1)
\]

后向算法过程如下:

​ step1:初始化 \(\beta_i(T)=1\)

​ step2:计算 \(\beta_i(t) = \sum^N_{j=1}a_{ij}b_j(O_{t+1})\beta_j(t+1)\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\pi_ib_i(O_1)\beta_i(1)\)

  • 时间复杂度 \(O(N^2T)\)

代码实现

还是上面的例子

#后向算法
def hmm_backward(A,B,pi,O):
    T = len(O)
    N = len(A[0])
    #step1 初始化
    beta = [[0]*T for _ in range(N)]
    for i in range(N):
        beta[i][-1] = 1

    #step2 计算beta(t)
    for t in reversed(range(T-1)):
        for i in range(N):
            for j in range(N):
                beta[i][t]  += A[i][j]*B[j][O[t+1]]*beta[j][t+1]

    #step3
    proba = 0
    for i in range(N):
        proba += pi[i]*B[i][O[0]]*beta[i][0]
    return proba,beta

A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
pi = [0.2,0.4,0.4]
O = [0,1,0,1]
hmm_backward(A,B,pi,O)  #结果为 0.06009

结果

前向-后向算法

回顾前向、后向变量:

  • \(a_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_1,O_2, ..., O_t\) 的概率
  • \(\beta_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率

\[\begin{aligned}
P(O,s_t=i|\lambda)
&= P(O_1,O_2, ..., O_T,s_t=i|\lambda)\\
&= P(O_1,O_2, ..., O_t,s_t=i,O_{t+1},O_{t+2}, ..., O_T|\lambda)\\
&= P(O_1,O_2, ..., O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, ..., O_T|O_1,O_2, ..., O_t,s_t=i,\lambda) \\
&= P(O_1,O_2, ..., O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, ..., O_T,s_t=i|\lambda)\\
&= a_i(t)*\beta_i(t)
\end{aligned}
\]

即在给定的状态序列中,\(t\) 时刻状态为 \(i\) 的概率。

使用前后向算法可以计算隐状态,记 \(\gamma_i(t) = P(s_t=i|O,\lambda)\) 表示时刻 \(t\) 位于隐状态 \(i\) 的概率

\[P\left(s_{t}=i, O | \lambda\right)=\alpha_{i}(t) \beta_{i}(t)
\]

\[\begin{aligned}
\gamma_{i}(t)
&=P\left(s_{t}={i} | O, \lambda\right)=\frac{P\left(s_{t}={i}, O | \lambda\right)}{P(O | \lambda)} \\
&=\frac{\alpha_{i}(t) \beta_{i}(t)}{P(O | \lambda)}=\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)}
\end{aligned}
\]

references:

[1] https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[2]https://www.cnblogs.com/fulcra/p/11065474.html

[3] https://www.cnblogs.com/sjjsxl/p/6285629.html

[4] https://blog.csdn.net/xueyingxue001/article/details/52396494

HMM-前向后向算法(附代码)的更多相关文章

  1. HMM 前向后向算法(转)

    最近研究NLP颇感兴趣,但由于比较懒,所以只好找来网上别人的比较好的博客,备份一下,也方便自己以后方便查找(其实,一般是不会再回过头来看的,嘿嘿 -_-!!) 代码自己重新写了一遍,所以就不把原文代码 ...

  2. HMM 自学教程(七)前向后向算法

    本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...

  3. 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率

    隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...

  4. 条件随机场CRF(二) 前向后向算法评估标记序列概率

    条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在条件随机场CRF(一)中我们总结了CRF的模 ...

  5. 从似然函数到EM算法(附代码实现)

    1. 什么是EM算法 最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型 ...

  6. main函数执行前、后再执行的代码

    一.main结束 不代表整个进程结束  (1)全局对象的构造函数会在main 函数之前执行,          全局对象的析构函数会在main函数之后执行:          用atexit注册的函数 ...

  7. SpringBoot+MyBatisPlus+ElementUI一步一步搭建前后端分离的项目(附代码下载)

    场景 一步一步教你在IEDA中快速搭建SpringBoot项目: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/87688277 ...

  8. 《统计学习方法》P179页10.22前向后向算法公式推导

  9. 隐马尔可夫(HMM)、前/后向算法、Viterbi算法

    HMM的模型  图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下 ...

随机推荐

  1. [YII2] 修改默认控制器Controller以及默认方法Action

    试了好多方法都没成功,下面方法绝对能成功设置 在框架里面有源码,在/vendor/yiisoft/yii2/web/Application.php的第34行找到了: class Application ...

  2. ubuntu搭建vulhub漏洞环境

    0x01 简介 Vulhub是一个面向大众的开源漏洞靶场,无需docker知识,简单执行两条命令即可编译.运行一个完整的漏洞靶场镜像.旨在让漏洞复现变得更加简单,让安全研究者更加专注于漏洞原理本身. ...

  3. Springboot:员工管理之删除员工及退出登录(十(9))

    springboot2.2.6 delete请求报错,降至2.1.11功能可用 原因未知 构建员工删除请求 com\springboot\controller\EmployeeController.j ...

  4. jquery动态live绑定toggle事件

    $(".btn").live("click",function(){ $(this).toggle( function () { //事件 1 console. ...

  5. 进制之间转换——day_01

    一.计算机文件大小单位 b = bit 位(比特) B = Byte 字节 1B = 8b #一个字节等于8位 简写 1Byte = 8 bit 1KB = 1024B 1MB = 1024KB 1G ...

  6. python学习笔记(四)---用户输入与while循环

    用户输入 函数input demo1: message = input("all you input is chars:") print(message) demo2: 由inpu ...

  7. thinkphp5 -- _initialize()初始化控制器

    public function _initialize() { parent::_initialize(); } public function __construct() { $; parent:: ...

  8. linux uniq 命令实用手册

    Linux uniq 命令用于处理文本内容中的重复行. 这里我们只介绍其常用参数,其完整用法可参见man uniq. 例如,我们有如下文件内容: >>> cat log.txt __ ...

  9. Linux开发初探

    坚持用了十几天的Linux操作系统,学会了很多的东西,但现在必须得抉择如何选择开发工具.在这些天的开发中,各种Linux下的IDE都有 所尝试.一向看好的Code::Blocks还是过于简单,用了一阵 ...

  10. 码云git本地仓库链接远程仓库

    原文链接: 点我 git提交时,仓库是空的,本地有源码   应该打开cmd   归到项目路径 然后输入git push -u origin master -f 是把本地的项目强制推送到空的仓库 git ...