数论入门——斐蜀定理与拓展欧几里得算法
斐蜀定理
内容
斐蜀定理又叫贝祖定理,它的内容是这样的:
若$a,bin N$,那么对于任意x,y,方程$ax+by=gcd(a,b)*k(kin N)$一定有解,且一定有一组解使$ax+by=gcd(a,b)$
推论
a,b互素的充要条件是方程$ax+by=1$有整数解。
证明
令$d=gcd(a,b)$,则$d|a,d|b$
那么就能得到$d|(ax+by)$
于是我们设s为$ax+by$能得到的最小正整数值,则$d|s$。
令$q=adiv s$(此处为整除),$r=amod s$,则$a=qs+r$。
->$r=a-qs$
->$r=a-q(ax+by)$
->$r=(1-qx)a+b(-qy)$
则通过观察可以发现r也是一个关于a,b的线性组合,其中$x=(1-qx),y=(-qy)$
因为$0leq r< s$,又因为s是a,b线性组合所能得到的最小自然数,那么r既然比s小,r只能等于0.
所以既然余数为0就说明$s|a$,同理可证明$s|b$,所以能得到$s|(ax+by)$。
于是就有$s|d$,又因为上文提到了$d|s$,所以得到$s==d$
由于s是$ax+by$所得到任意值的集合中的最小者,又因为s=d,d=gcd(a,b)所以得到
$ax+by=gcd(a,b)$
证明完毕
拓展欧几里得算法
内容
所谓拓展欧几里得算法,那一定是跟欧几里得算法有一定关系的,拓展欧几里得算法所研究的问题是,讨论如何求满足斐蜀定理的一组方程的解。
方法
下面直接给出代码
1 |
///解整数方程:ax+by=gcd(a,b); |
证明
假设a>b:
Ⅰ.当b=0时,gcd(a,b)=a,于是方程就变成了$ax=gcd(a,b)=a$,易知x=1,那么当x=1,y=0,时就得到了方程的一组解。
Ⅱ.设两方程:
$ax_1+by_1=gcd(a,b)$
$bx_2+(amod b)y_x=gcd(b,amod b)$
有欧几里得算法得$gcd(a,b)=gcd(b,amod b)$ 于是得到:
$ax_1+by_1=bx_2+(amod b)y_2$.
其中$amod b=a-adiv btimes b$(此处为整除),带入原式得到:
$ax_1+by_1=bx_2+ay_2-adiv btimes y_2times b$
通过移项得到:
$ax_1+by_1=ay_2+b(x_2-adiv btimes y_2)$
则可以得到:
$x_1=y_2,y_1=(x_2-adiv btimes y_2)$
于是就得到了x,y的递推关系,求接的过程是递归的,从最后一个解$x=1,y=0$,就能推导到第一个式子的一个解。证毕。
参考链接
数论入门——斐蜀定理与拓展欧几里得算法的更多相关文章
- ACM数论-欧几里得与拓展欧几里得算法
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). ...
- gcd&&exgcd&&斐蜀定理
gcd就是求a和b最大公约数,一般方法就是递推.不多说,上代码. 一.迭代法 int gcd(int m, int n) { ) { int c = n % m; n = m; m = c; } re ...
- POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)
题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...
- POJ 1601 拓展欧几里得算法
学习链接:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 先来学习一下什么是欧几里得算法: 欧几里得原理是:两个整数 ...
- 欧几里得算法(gcd) 裴蜀定理 拓展欧几里得算法(exgcd)
欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】
2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1326 Solved: 815[Submit][Stat ...
- 欧几里得 & 拓展欧几里得算法 解说 (Euclid & Extend- Euclid Algorithm)
欧几里得& 拓展欧几里得(Euclid & Extend-Euclid) 欧几里得算法(Euclid) 背景: 欧几里德算法又称辗转相除法.用于计算两个正整数a.b的最大公约数. -- ...
- hdu 1576 A/B 拓展欧几里得算法
A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- lame定理求欧几里得算法的求余和赋值次数
根据lame定理,根据欧几里得算法求(a,b)的最大公因数过程如下(假设a>b):
随机推荐
- Unity获取游戏对象详解
我觉得Unity里面的Transform 和 GameObject就像两个双胞胎兄弟一样,这俩哥们很要好,我能直接找到你,你也能直接找到我.我看很多人喜欢在类里面去保存GameObject对象.解决G ...
- 在excel中评估模型性能
一直在用的结果, 从代码中整理出来. 评分卡模型的结果一般在excel中即可计算完成. 下面是在number中计算评分卡模型的性能(KS/AUC), 表格中百分数省略%
- rsync搭建
服务器: 查看是否安装:rpm -qa rsync 未安装则:yum install -y rsync 添加rsync用户 useradd -s /sbin/nologin -M rsync 编辑/e ...
- 201771010123汪慧和《面向对象程序设计Java》第十周实验总结
一.理论部分 1.泛型:也称参数化类型.就是定义类.接口和方法时,通过类型参数指示将要处理的对象类型. 2.泛型程序设计:编写代码可以被很多不同类型的对象所重用. 3.泛型方法: a.除了泛型类外,还 ...
- 洛谷P1002 过河卒(动态规划)
题目描述 棋盘上 AA 点有一个过河卒,需要走到目标 BB 点.卒行走的规则:可以向下.或者向右.同时在棋盘上 CC 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为 ...
- 因子分析和PCA总结
因子分析和PCA 定义 因子分析就是数据降维工具.从一组相关变量中删除冗余或重复,把相关的变量放在一个因子中,实在不相关的因子有可能被删掉.用一组较小的“派生”变量表示相关变量,这个派生就是新的因子. ...
- linux 离线安装mysql7或者8
安装方式:官网下载压缩包进行安装 1.下载jdk8 登录网址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-download ...
- 清除input表单内容
碰到几次情况,页面刷新或者从上级页面返回表单的内容依然遗留,很影响使用. <form action="" method="" autocomplete=& ...
- UML-如何画常用UML交互图?
1.生命线框图(参与者) 2.消息表达式
- 2×c列联表|多组比例简式|卡方检验|χ2检验与连续型资料假设检验
第四章 χ2检验 χ2检验与连续型资料假设检验的区别? 卡方检验的假设检验是什么? 理论值等于实际值 何条件下卡方检验的需要矫正?如何矫正? 卡方检验的自由度如何计算? Df=k-1而不是n-1 卡方 ...