python数据分析工具——Pandas、StatsModels、Scikit-Learn
Pandas
Pandas是 Python下最强大的数据分析和探索工具。它包含高级的数据结构和精巧的工具,使得在 Python中处理数据非常快速和简单。 Pandas构建在 Numpy之上,它使得以 Numpy为中心的应用很容易使用。Pandas的功能非常强大,支持类似于SQL的数据增、删、查、改,并且带有丰富的数据处理函数;支持时间序列分析功能;支持灵活处理缺失数据等。
Pandas的安装相对来说比较容易,安装好 Numpy之后,就可以直接安装了,通过pip install pandas或下载源码后 python setup. py install安装均可。由于我们频繁用到读取和写入Excel,但默认的 Pandas还不能读写 Excel文件,需要安装xlrd(读)和xlwt(写)库才能支持 Excel的读写,方法如下:
pip install xrd #为 Python添加读取 Excel的功能
pip install xlwt #为 Python添加写入 Excel的功能
Pandas基本的数据结构是 Series和 Dataframe。顾名思义, Series就是序列,类似一维数组; Data Frame则是相当于一张二维的表格,类似二维数组,它的每一列都是一个 Series。为了定位 Series中的元素, Pandas提供了Index对象,每个 Series都会带有一个对应的Index,用来标记不同的元素, Index的内容不一定是数字,也可以是字母、中文等,它类似于SQL中的主键。
类似地, Data Frame相当于多个带有同样 Index的 Series的组合,每个 Seiries都带有唯一的表头,用来标识不同的 Series。举个例子:
# -*- coding:utf-8 -*-
import pandas as pd #通常用pd作为 pandas的别名。
s=pd.Series([1,2,3], index=['a','b','c']) #创建一个序列s
d=pd.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c']) #创建一个表
d2=pd.DataFrame(s) #也可以用已有的序列来创建表格
print(d.head()) #预览前5行数据
print(d.describe()) #数据基本统计量
pd.read_excel('data.xls') #读取Exce1文件,创建 Dataframe
pd.read_csv('data.csv', encoding='utf-8') #读取文本格式的数据,一般用 encoding指定编码。
StatsModels
Pandas着眼于数据的读取、处理和探索,而StatsModels则更加注重数据的统计建模分析,它使得 Python有了R语言的味道。 StatsModels支持与 Pandas进行数据交互,因此,它与 Pandas结合,成为了 Python下强大的数据挖掘组合。
安装StatsModels相当简单,既可以通过pip安装,又可以通过源码安装。对于Windows用户来说,官网上甚至已经有编译好的exe文件以供下载。如果手动安装的话,需要自行解决好依赖问题, Statmodel依赖于Pandas(当然也依赖于 Pandas所依赖的),同时还依赖于pasty(一个描述统计的库)。
下面是一个用 Stats Models来进行ADF平稳性检验的例子。
# -*- coding: utf-8 -*-
from statsmodels.tsa.stattools import adfuller as ADF #导入ADF恰验
import numpy as np
ADF.(np.random.rand(100)) #返回的结果有ADF、p值
Scikit-Learn
Scikit-Learn是 Python下强大的机器学习工具包,它提供了完善的机器学习工具箱,包括数据预处理、分类、回归、聚类、预测和模型分析等。Scikit-Learn依赖于 Numpy、 Scipy和 Matplotlib,因此,只需要提前安装好这几个库,然后安装 Scikit-Learn就基本上没有什么问题了,安装方法和之前一样,要不就是pipinstall scikit-leam安装,要不就是下载源码自己安装。
创建一个机器学习的模型很简单:
# -*- coding:utf-8 -*-
from sklearn.linear_model import Linearregression #导入线性回归模型
model= Linearregression() #建立线性回归模型
print (model)
1)所有模型提供的接口有:
model fit0:训练模型,对于监督模型来说是 fit(x,y),对于非监督模型是fit(X)。
2)监督模型提供的接口有:
model predict(xnew):预测新样本
model predict proba(Xnew):预测概率,仅对某些模型有用(比如LR)
model score:得分越高,fit越好
3)非监督模型提供的接口有:
model transform(:从数据中学到新的“基空间”
model fit transform:从数据中学到新的基并将这个数据按照这组“基”进行转换。
Scikit- Learn本身提供了一些实例数据,比较常见的有安德森鸢尾花卉数据集、手写图像数据集等。现在使用鸢尾花数据集iris写一个简单的机器学习的例子。对于这个数据集,可以阅读《R语言数据挖掘实践——数据挖掘简介》
# -*- coding:utf-8 -*-
from sklearn import datasets #导入数据集
iris= datasets.load_iris() #加载数据集
print(iris.data.shape) #查看数据集大小
from sklearn import svm #导入SVM模型
clf=svm. LinearSVC() #建立线性SVM分类器
clf.fit(iris.data,iris.target) #用数据训练模型
clf.predict([[5.0,3.6,1.3,0.25]]) #训练好模型之后,输入新的数据进行预测
clf.coef_ #查看训练好模型的参数
python数据分析工具——Pandas、StatsModels、Scikit-Learn的更多相关文章
- python数据分析工具 | pandas
pandas是python下强大的数据分析和探索工具,是的python在处理数据时非常快速.简单.它是构建在numpy之上的,包含丰富的数据处理函数,支持时间序列分析功能,支持灵活处理缺失数据. pa ...
- Python数据分析工具:Pandas之Series
Python数据分析工具:Pandas之Series Pandas概述Pandas是Python的一个数据分析包,该工具为解决数据分析任务而创建.Pandas纳入大量库和标准数据模型,提供高效的操作数 ...
- Python数据分析库pandas基本操作
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...
- Python数据分析之pandas基本数据结构:Series、DataFrame
1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 ...
- Python 数据分析:Pandas 缺省值的判断
Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 No ...
- 数据分析工具Pandas
参考学习资料:http://pandas.pydata.org 1.什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analys ...
- 数据分析工具pandas简介
什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analysis). Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建 ...
- python数据分析工具安装集合
用python做数据分析离不开几个好的轮子(或称为科学棧/第三方包等),比如matplotlib,numpy, scipy, pandas, scikit-learn, gensim等,这些包的功能强 ...
- Python数据分析之Pandas操作大全
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设 ...
随机推荐
- PyTorch专栏(五):迁移学习
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 P ...
- 关于用命令行和idea对项目打jar包
前提说一下,我们一般是对编译后的项目进行打包,不然打包后还得自己去重新编译class文件. 假如这是你的一个项目目录: 我们要写一个简单的计算器工具类项目,然后对他进行打包, idea里面out文件夹 ...
- RabbitMQ AMQP 事务机制
1,在之前的文章中介绍了RabbitMQ的五种队列形式 其中,在工作队列中,为了保证消费者的公平性,采用了channel.basicQos(1),保证了每次只发一条消息给消费者消费,并且使用手动签收的 ...
- 常见Web安全漏洞--------防盗链
1,防盗链防止盗用自己服务上的东西... 2,XSS服务上有这么一张图: <!DOCTYPE html> <html> <head lang="en" ...
- nginx负载均衡例子
upstream demo { ip_hash;//客户连接后, 一直用这个IP,直到会话结束,否则,动态程序可能会在换IP后出错 server 192.168.1.1:80 weight=5 | d ...
- LeetCode#1047-Remove All Adjacent Duplicates In String-删除字符串中的所有相邻重复项
一.题目 给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们. 在 S 上反复执行重复项删除操作,直到无法继续删除. 在完成所有重复项删除操作后返回最终的字符串.答案 ...
- SQL server 2008 简介
一.简介 网状模型 关系模型(独立表) 拆分成有主键的表.连接表即可. 工资与奖金有了依赖关系.所以可以不保存奖金,计算得出结果. 二. 1. 2.环境配置 安装iis服务 https://jingy ...
- MySql 分组函数
#二.分组函数/*功能:用作统计使用,又称为聚合函数或统计函数或组函数 分类:sum 求和.avg 平均值.max 最大值 .min 最小值 .count 计算个数 特点:1.sum.avg一般用于处 ...
- while实现2-3+4-5+6...+100 的和
while实现2-3+4-5+6...+100 的和 可以看到规律为2-100内所有奇数都为减法,偶数为加法 设定变量 total=0: count=2 当count为偶数时与total相加,反则相减 ...
- 最大子矩阵hdu1559(二维前缀和)
最大子矩阵hdu1559 Problem Description 给你一个m×n的整数矩阵,在上面找一个x×y的子矩阵,使子矩阵中所有元素的和最大. Input 输入数据的第一行为一个正整数T,表示有 ...