递归回溯法求N皇后问题
问题描述:在一个NN(比如44)的方格中,在每一列中放置一个皇后,要求放置的皇后不在同一行,同一列,同一斜线上,求一共有多少种放置方法,输出放置的数组。
思路解析:从(1,1)开始,一列一列的放置皇后,第一列放置在(1,1)。第二列(1,2)不行,(2,2)不行,(2,3)可以,自此第2列放置完成。第三列依次判断。
可以看到对于第j列都要从第一行开始判断(1,j),(2,j),(3,j)...(N,j)。如果有一个满足则暂停该列,向后判断下一列,(1,j+1),(2,j+1),(3,j+1)...(N,j+1),
同样出现第一个满足放置的(i,j+1)就要暂停该列,继续向下一列,直到第N列。第N列判断完成后,返回N-1列继续执行(i,N-1),(i+1,N-1)...可以看出每一列都要重复
判断,可以考虑递归算法queen(int column,int(*a)N) 在queen中若column=N-1(有下标),则全局变量number++,输出二维数组a,当递归返回时,注意恢复数值为0,
比如suit(i,column,a)满足放置条件,则递归进入queen(column+1,a),返回后要令a[i][column]==0;
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
//判断点(i,j)是否合适
bool suit(int m, int n,int (*a)[4]) {
int i, j;
for (j = 0; j < 4; j++) {//判断同一行
if (a[m][j] == 1&&j!=n)
return false;
}
for (i = 0; i < 4; i++) {//判断同一列
if (a[i][n] == 1&&i!=m)
return false;
}
for ( i = m - 1, j = n - 1; i >= 0&& j >= 0; i--, j--) {
if (a[i][j] == 1) {
return false;
}
}
for ( i = m + 1, j = n - 1; i < 4&&j >= 0; i++, j--) {
if (a[i][j] == 1) {
return false;
}
}
}
void queen(int number,int column,int (*a)[4]) {
if (column == 4) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
printf_s("%d", a[i][j]);
}
printf_s("\n");
number++;
}
}
for (int i = 0; i <4; i++) {
if (suit(i, column,a)) {
a[i][column] = 1;
queen(number,column+1, a);//从这里返回
a[i][column] = 0;
}
}
}
int main() {
int a[4][4];
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
a[i][j] = 0;
}
}
static int number = 0;
queen(number,0, a);
system("pause");
}
递归回溯法求N皇后问题的更多相关文章
- 回溯法解决N皇后问题(以四皇后为例)
以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度 ...
- 使用回溯法求所有从n个元素中取m个元素的组合
不多说了,直接上代码,代码中有注释,应该不难看懂. #include <stdlib.h> #include <stdio.h> typedef char ELE_TYPE; ...
- 回溯法求解n皇后和迷宫问题
回溯法是一种搜索算法,从某一起点出发按一定规则探索,当试探不符合条件时则返回上一步重新探索,直到搜索出所求的路径. 回溯法所求的解可以看做解向量(n皇后坐标组成的向量,迷宫路径点组成的向量等),所有解 ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- C++使用回溯法实现N皇后问题的求解
回溯法是个很无聊的死算方法,没什么技巧,写这篇博客主要原因是以前思路不太清晰,现在突然想用回溯法解决一个问题时,无法快速把思路转换成代码. ------------------------------ ...
- C语言递归回溯法迷宫求解
本例将随机产生一个10*10的迷宫输出后,在下面输出此迷宫的解法. 解法为从坐标(1,1)处进入,从(8,8,)出去,优先线路为先右后下再上最后为左. 不少人求解此题时运用的栈的相关知识,本例寻找线路 ...
- 剑指offer:矩阵中的路径(递归回溯法DFS类似迷宫)
1. 题目描述 /* 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径. 路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子. 如果一条 ...
- c++回溯法求组合问题(取数,选取问题)从n个元素中选出m个的回溯算法
假如现在有n个数,分别从里面选择m个出来,那么一共有多少种不同的组合呢,分别是哪些呢? 利用计算机的计算力,采用回溯算法很容易求解 程序源代码如下: #include<iostream># ...
- 用试探回溯法解决N皇后问题
学校数据结构的课程实验之一. 数据结构:(其实只用了一个二维数组) 算法:深度优先搜索,试探回溯 需求分析: 设计一个在控制台窗口运行的“n皇后问题”解决方案生成器,要求实现以下功能: 由n*n个方块 ...
随机推荐
- jquery.qrcode笔记
由于一个坑爹的项目需要生成二维码扫描,后台由于数据库比较麻烦,就只能前端做了,于是乎找到Js生成qrcode的一个库:https://github.com/jeromeetienne/jquery-q ...
- 初识SpringIOC
初识SpringIOC 简介 IOC(Inversion of Control)控制反转.指的是获取对象方式由原来主动获取,到被动接收的转变.在Spring中,IOC就是工厂模式解耦,是Srping框 ...
- TDA2050功率放大器研究
音频功率放大模块(以下简称功放)用于处理模拟信号,将功率较低的输入信号进行线性放大,输出大功率的信号以驱动换能器.通常,电子发烧友自己设计功放,与各类音源和喇叭匹配,以得到满意的音响效果.在测试中,实 ...
- 【深入理解Java虚拟机 】类加载器的命名空间以及类的卸载
类加载器的命名空间 每个类加载器又有一个命名空间,由其以及其父加载器组成 类加载器的命名空间的作用和影响 每个类加载器又有一个命名空间,由其以及其父加载器组成 在每个类加载器自己的命名空间中不能出现相 ...
- windows下用Python把pdf文件转化为图片
依赖:PyMuPDF(pip install pymupdf) # -*- coding: utf-8 -*- """ 1.安装库 pip install pymupdf ...
- 前端如何真正晋级成全栈:腾讯 Serverless 前端落地与实践
Serverless 是当下炙手可热的技术,被认为是云计算发展的未来方向,拥有免运维.降低开发成本.按需自动扩展等诸多优点.尤其是在前端研发领域,使用 Node 开发云函数,可以让前端工程师更加专注于 ...
- 搭建websocket消息推送服务,必须要考虑的几个问题
近年,不论是正在快速增长的直播,远程教育以及IM聊天场景,还是在常规企业级系统中用到的系统提醒,对websocket的需求越来越大,对websocket的要求也越来越高.从早期对websocket的应 ...
- H5页面通用头部设置
见到很多人写H5页面都不设置头部,不忍直视,于是整理一篇文章,不定期更新,为了让自己显得专业一点,也为了方便自己复制粘贴 一般来说必须设置项 <!-- 页面编码 --> <meta ...
- JZOJ 5246. 【NOIP2017模拟8.8A组】Trip(trip)
5246. [NOIP2017模拟8.8A组]Trip(trip) (File IO): input:trip.in output:trip.out Time Limits: 1500 ms Memo ...
- 微服务架构-Gradle下载安装配置教程
一.开发条件 JDK8下载地址:https://www.oracle.com/java/technologies/javase-jdk8-downloads.html Eclipse下载地址:http ...