【转】动态规划之最长公共子序列(LCS)
【原文链接】最长公共子序列(Longest Common Subsequence,简称 LCS)是一道非常经典的面试题目,因为它的解法是典型的二维动态规划,大部分比较困难的字符串问题都和这个问题一个套路,比如说编辑距离。而且,这个算法稍加改造就可以用于解决其他问题,所以说 LCS 算法是值得掌握的。
题目就是让我们求两个字符串的 LCS 长度:
输入: str1 = "abcde", str2 = "ace"
输出: 3
解释: 最长公共子序列是 "ace",它的长度是 3
肯定有读者会问,为啥这个问题就是动态规划来解决呢?因为子序列类型的问题,穷举出所有可能的结果都不容易,而动态规划算法做的就是穷举 + 剪枝,它俩天生一对儿。所以可以说只要涉及子序列问题,十有八九都需要动态规划来解决,往这方面考虑就对了。
下面就来手把手分析一下,这道题目如何用动态规划技巧解决。
动态规划思路
第一步,一定要明确 dp 数组的含义。对于两个字符串的动态规划问题,套路是通用的。
比如说对于字符串 s1 和 s2,一般来说都要构造一个这样的 DP table:

为了方便理解此表,我们暂时认为索引是从 1 开始的,待会的代码中只要稍作调整即可。其中,dp[i][j] 的含义是:对于 s1[1..i] 和 s2[1..j],它们的 LCS 长度是 dp[i][j]。
比如上图的例子,d[2][4] 的含义就是:对于 "ac" 和 "babc",它们的 LCS 长度是 2。我们最终想得到的答案应该是 dp[3][6]。
第二步,定义 base case。
我们专门让索引为 0 的行和列表示空串,dp[0][..] 和 dp[..][0] 都应该初始化为 0,这就是 base case。
比如说,按照刚才 dp 数组的定义,dp[0][3]=0 的含义是:对于字符串 "" 和 "bab",其 LCS 的长度为 0。因为有一个字符串是空串,它们的最长公共子序列的长度显然应该是 0。
第三步,找状态转移方程。
这是动态规划最难的一步,不过好在这种字符串问题的套路都差不多,权且借这道题来聊聊处理这类问题的思路。
状态转移说简单些就是做选择,比如说这个问题,是求 s1 和 s2 的最长公共子序列,不妨称这个子序列为 lcs。那么对于 s1 和 s2 中的每个字符,有什么选择?很简单,两种选择,要么在 lcs 中,要么不在。

这个「在」和「不在」就是选择,关键是,应该如何选择呢?这个需要动点脑筋:如果某个字符应该在 lcs 中,那么这个字符肯定同时存在于 s1 和 s2 中,因为 lcs 是最长公共子序列嘛。所以本题的思路是这样:
用两个指针 i 和 j 从后往前遍历 s1 和 s2,如果 s1[i]==s2[j],那么这个字符一定在 lcs 中;否则的话,s1[i] 和 s2[j] 这两个字符至少有一个不在 lcs 中,需要丢弃一个。先看一下递归解法,比较容易理解:
def longestCommonSubsequence(str1, str2) -> int:
def dp(i, j):
# 空串的 base case
if i == -1 or j == -1:
return 0
if str1[i] == str2[j]:
# 这边找到一个 lcs 的元素,继续往前找
return dp(i - 1, j - 1) + 1
else:
# 谁能让 lcs 最长,就听谁的
return max(dp(i-1, j), dp(i, j-1))
# i 和 j 初始化为最后一个索引
return dp(len(str1)-1, len(str2)-1)
对于第一种情况,找到一个 lcs 中的字符,同时将 i j 向前移动一位,并给 lcs 的长度加一;对于后者,则尝试两种情况,取更大的结果。
其实这段代码就是暴力解法,我们可以通过备忘录或者 DP table 来优化时间复杂度,比如通过前文描述的 DP table 来解决:
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length();
int n = text2.length();
int[][] dp = new int[m + 1][n + 1];
for(int i = 1;i <= m;i++){
for(int j = 1;j <= n;j++){
if(text1.charAt(i - 1) == text2.charAt(j - 1))
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = Math.max(dp[i - 1][j],dp[i][j - 1]);
}
}
return dp[m][n];
}
}
总结
对于两个字符串的动态规划问题,一般来说都是像本文一样定义 DP table,因为这样定义有一个好处,就是容易写出状态转移方程,dp[i][j] 的状态可以通过之前的状态推导出来:

找状态转移方程的方法是,思考每个状态有哪些「选择」,只要我们能用正确的逻辑做出正确的选择,算法就能够正确运行。
【转】动态规划之最长公共子序列(LCS)的更多相关文章
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 51nod 1006 最长公共子序列Lcs 【LCS/打印path】
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 每日一题-——最长公共子序列(LCS)与最长公共子串
最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...
- 51nod 1006:最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
- Oracle时间日期计算--计算某一日期为一年中的第几周
Oracle时间日期计算--计算某一日期为一年中的第几周 select to_char(sysdate-10,'yyyymmdd')||':iw:'||to_char(sysdate-10,'iw') ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(三)
作者:Geppetto 前面我们介绍了特征选择(Feature Selection,FS)与离散化数据的重要性,总览的介绍了PSO在FS中的重要性和一些常用的方法,介绍了FS与离散化的背景,介绍本文所 ...
- Matlab——m_map指南(3)——实例
m_map 实例 1. clear all m_proj('ortho','lat', 48,'long',-123');%投影方式,范围 m_coast('patch','r');%红色填充 m_g ...
- 封装一个通用的PopupWindow
上篇文章是关于建造者设计模式的,今天顺便封装一个通用的 PopupWindow 来实践一下, 同时也方便以后使用 PopupWindow,本文将从下面几个方面来介绍 PopupWindow 及其封装, ...
- docker-compose搭建redis哨兵集群
头脑风暴 出于学习目的,您可以很轻松地在docker环境下运行redis的单个实例,但是如果您需要在生产环境中运行它,那么必须将Redis部署为HA(High Avaliable)模式. Redis ...
- Mysql 截取字符串总结
MySQL 字符串截取函数:left(), right(), substring(), substring_index().还有 mid(), substr().其中,mid(), substr() ...
- 新建jsp文件,The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path错误解决方法
新建一个jsp文件后,有一个错误,The superclass "javax.servlet.http.HttpServlet" was not found on the Java ...
- Docker Swarm 资源管理
Docker Swarm Docker Swarm是Docker官方项目之一,是使用SwarmKit构建的Docker引擎内置的集群管理和编排工具,提供Docker容器集群服务,是Docker官方对容 ...
- WeixinJSBridge API使用实例
<span style="color: rgb(51, 51, 51); font-family: tahoma, arial, 宋体; font-size: 14px; line-h ...
- Elasticsearch创建mapping
(put)请求方式 http://192.168.1.200:9200/index_mapping body 参数 { "mappings":{ "properties& ...